Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Thermodynamic properties of 9-fluorenone: Mutual validation of experimental and computational results

Chirico, R. D.[Robert D.], Kazakov, A. F.[Andrei F.], Steele, W. V.[William V.]
J. Chem. Thermodyn. 2012, 54, 278-287
ABSTRACT
Measurements leading to the calculation of thermodynamic properties for 9-fluorenone (IUPAC name 9H-fluoren-9-one and Chemical Abstracts registry number [486-25-9]) in the ideal-gas state are reported. Experimental methods were adiabatic heat-capacity calorimetry, inclined-piston manometry, comparative ebulliometry, and combustion calorimetry. Critical properties were estimated. Molar entropies for the ideal-gas state were derived from the experimental studies at selected temperatures T between T = 298.15 K and T = 600 K, and independent statistical calculations were performed based on molecular geometry optimization and vibrational frequencies calculated at the B3LYP/6 - 31 + G(d,p) level of theory. Values derived with the independent methods are shown to be in excellent accord with a scaling factor of 0.975 applied to the calculated frequencies. This same scaling factor was successfully applied in the analysis of results for other polycyclic molecules, as described in recent articles by this research group. All experimental results are compared with property values reported in the literature. Thermodynamic consistency between properties is used to show that several studies in the literature are erroneous.
Compounds
# Formula Name
1 CO2 carbon dioxide
2 H2O water
3 O2 oxygen
4 C13H8O 9(9H)-fluorenone
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 4
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 4
  • Triple point temperature, K ; Crystal
  • Crystal
  • Liquid
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Pycnometric method
  • 1
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Vacuum adiabatic calorimetry
  • 68
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vacuum adiabatic calorimetry
  • 23
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Vacuum adiabatic calorimetry
  • 25
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vacuum adiabatic calorimetry
  • 11
  • POMD
  • 4
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 25
  • POMD
  • 4
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vacuum adiabatic calorimetry
  • 11
  • POMD
  • 4
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Inclined piston gauge
  • 13
  • POMD
  • 4
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Twin ebulliometer
  • 24
  • POMD
  • 4
  • Molar entropy, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 25
  • POMD
  • 4
  • Molar entropy, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vacuum adiabatic calorimetry
  • 11
  • RXND
  • 4
  • 1
  • 2
  • 3
  • Specific internal energy of reaction at constant volume, J/g
  • Rotating bomb calorimetry
  • 1