Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Densities, sound velocities, and refractive indexes of (tetralin + n-decane) and thermodynamic modeling by Prigogine-Flory-Patterson model

Paredes, M. L. L.[Marcio L. L.], Reis, R. A.[Rodrigo A.], Silva, A. A.[Amanda A.], Santos, R. N. G.[Rafael N. G.], Santos, G. J.[Gisele J.], Ribeiro, M. H. A., Ximango, P. B.
J. Chem. Thermodyn. 2012, 45, 1, 35-42
ABSTRACT
Mixtures of tetralin (1,2,3,4-tetrahydronaphthalene), an aromatic cyclic molecule, and n-decane present asymmetries in chemical nature, shape, and chain length, and are frequently found, e.g., in naphtha or kerosene fractions. Aiming at understanding the impact of these asymmetries on some thermophysical properties, this work presents densities, sound velocities, and refractive indexes for this binary system along with the properties of the pure components at T = (293.15, 303.15, 313.15, 323.15, 333.15, and 343.15) K over whole composition range and atmospheric pressure. From these data, the following derived properties were obtained: isentropic compressibility, molar refractivity, excess volume, excess isentropic compressibility, molar refractivity deviations, and thermal expansion coefficient. Several sound velocity mixing rules were tested, and the best result was for Nomoto mixing rule. Pure component densities and sound velocities were correlated with Prigogine-Flory-Patterson (PFP) model. The binary interaction parameter for this model was obtained from correlation of excess volumes and isentropic compressibilities. This model correlated experimental densities very well and correlated reasonably well sound velocities and thermal expansion coefficient.
Compounds
# Formula Name
1 C10H12 1,2,3,4-tetrahydronaphthalene
2 C10H22 decane
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Refractive index (Na D-line) ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Standard Abbe refractometry
  • 6
  • POMD
  • 1
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 6
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 6
  • POMD
  • 2
  • Refractive index (Na D-line) ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Standard Abbe refractometry
  • 6
  • POMD
  • 2
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 6
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 6
  • POMD
  • 1
  • 2
  • Refractive index (Na D-line) ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Standard Abbe refractometry
  • 66
  • POMD
  • 1
  • 2
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 66
  • POMD
  • 1
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 66
  • POMD
  • 1
  • 2
  • Excess molar volume, m3/mol ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Calculated with densities of this investigation
  • 66