Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Thermodynamic and spectroscopic studies on binary mixtures of imidazolium ionic liquids in ethylene glycol

Kumar, B.[Bhupinder], Singh, T.[Tejwant], Rao, K. S., Pal, A.[Amalendu], Kumar, A.[Arvind]
J. Chem. Thermodyn. 2012, 44, 1, 121-127
ABSTRACT
The thermodynamic behaviour of imidazolium based ionic liquids (ILs), 1-butyl-3-methylimidazolium chloride [C4mim][Cl]; 1-octyl-3-methylimidazolium chloride [C8mim][Cl], and 1-butyl-3-methylimidazolium methylsulfate [C4mim][C1OSO3] in ethylene glycol [HOCH2CH2OH] (EG) have been investigated over the whole composition range at T = (298.15 to 318.15) K to probe the interactions in bulk. For the purpose, volumetric properties such as excess molar volume, apparent molar volume, and its limiting values at infinite dilution have been calculated from the experimental density measurements. The molecular scale interactions between ionic liquids and EG have been investigated through Fourier transform infrared (FTIR) and 1H NMR spectroscopy. The shift in the vibrational frequency for C-H stretch of aromatic ring protons of ILs and O-H stretch of EG molecules has been analysed. The NMR chemical shifts for various protons of RTILS or EG molecules and their deviations show multiple hydrogen bonding interactions of varying strengths between RTILs and EG in their binary mixtures.
Compounds
# Formula Name
1 C8H15ClN2 1-butyl-3-methylimidazolium chloride
2 C12H23ClN2 1-methyl-3-octylimidazolium chloride
3 C9H18N2O4S 1-butyl-3-methylimidazolium methyl sulfate
4 C2H6O2 1,2-ethanediol
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 4
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 42
  • POMD
  • 4
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 42
  • POMD
  • 4
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 39