Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Experimental study of high pressure phase equilibrium of (CO2 + NO2/N2O4) mixtures

Camy, S., Letourneau, J. J., Condoret, J.-S.
J. Chem. Thermodyn. 2011, 43, 12, 1954-1960
ABSTRACT
Experimental bubble pressure, as well as liquid density of (CO2 + NO2/N2O4) mixtures are reported at temperatures ranging from (298 to 328.45) K. Experiments were carried out using a SITEC high-pressure variable volume cell. Transition pressures were obtained by the synthetic method and liquid density was deduced from measurement of the cell volume. Correlation of experimental results was carried out without considering chemical equilibrium of NO2/N2O4 system. (Liquid + vapour) equilibrium was found to be accurately modelled using the Peng-Robinson equation of state with classical quadratic mixing rules and with a binary interaction coefficient kij equal to zero. Nevertheless, modelling of liquid density values was unsatisfactory with this approach.
Compounds
# Formula Name
1 NO2 nitrogen dioxide
2 CO2 carbon dioxide
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 2
  • 1
  • Vapor or sublimation pressure, kPa ; Gas
  • Temperature, K; Gas
  • Mole fraction - 2; Gas
  • Gas
  • Liquid
  • Closed cell (Static) method
  • 1
  • POMD
  • 2
  • 1
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 2; Liquid
  • Liquid
  • Gas
  • Closed cell (Static) method
  • 17