Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Enthalpies of sublimation of ferrocene and nickelocene measured by calorimetry and the method of Langmuir

Rojas, A.[Aaron], Vieyra-Eusebio, M. T.[Maria Teresa]
J. Chem. Thermodyn. 2011, 43, 11, 1738-1747
ABSTRACT
A quick and accurate methodology that is based on Langmuir's equation and that is developed by utilising a DSC7 device is proposed for the measurement of the enthalpies of sublimation of substances characterised by vapour pressures of approximately 1.0 Pa at room temperature. The procedure was applied to ferrocene and nickelocene; the accuracy and uncertainty associated with the experimental results show that the reliability of the developed indirect method is comparable to the direct calorimetric measurements also performed in this work. Furthermore, the melting data and crystal-phase heat capacities for both metallocenes were calorimetrically measured, whereas the gas-phase heat capacity for each metallic bis(cyclopentadienyl) was theoretically estimated by DFT calculations.
Compounds
# Formula Name
1 C10H10Fe ferrocene
2 C10H10Ni nickelocene
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 1
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 1
  • Molar enthalpy of vaporization or sublimation, kJ/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • DSC
  • 1
  • POMD
  • 1
  • Molar enthalpy of vaporization or sublimation, kJ/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Static calorimetry
  • 1
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Small sample (50 mg) DSC
  • 62
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Gas
  • Temperature, K; Gas
  • Pressure, kPa; Gas
  • Gas
  • Small sample (50 mg) DSC
  • 61
  • POMD
  • 2
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 2
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 2
  • Molar enthalpy of vaporization or sublimation, kJ/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • DSC
  • 1
  • POMD
  • 2
  • Molar enthalpy of vaporization or sublimation, kJ/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Static calorimetry
  • 1
  • POMD
  • 2
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Small sample (50 mg) DSC
  • 62
  • POMD
  • 2
  • Molar heat capacity at constant pressure, J/K/mol ; Gas
  • Temperature, K; Gas
  • Pressure, kPa; Gas
  • Gas
  • Small sample (50 mg) DSC
  • 61