Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Thermophysical properties and phase equilibria study of the binary systems {N-hexylquinolinium bis(trifluoromethylsulfonyl)imide + aromatic hydrocarbons, or an alcohol}

Domanska, U.[Urszula], Zawadzki, M.[Maciej], Zwolinska, M.[Magdalena]
J. Chem. Thermodyn. 2011, 43, 5, 775-781
ABSTRACT
The new quinolinium ionic liquid has been synthesised as a continuation of our work with quinoliniumbased ionic liquids (ILs). The work includes specific basic characterisation of synthesized compounds: N-hexylquinolinium bromide, [HQuin][Br] and N-hexylquinolinium bis{(trifluoromethyl)sulfonyl}imide [HQuin][NTf2] by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure [HQuin][NTf2] i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity have been measured using a differential scanning microcalorimetry technique (DSC) and thermal analysis instrument (TA). Densities and viscosities were determined as a function of temperature. Phase equilibria for the binary systems: {[HQuin][NTf2]) + aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 320) K. For all the binary systems with benzene and alkylbenzenes, the eutectic diagrams were observed with immiscibility gap in the liquid phase beginning from (0.13 to 0.28) mole fraction of the IL with very high an upper critical solution temperature (UCST). For mixtures with alcohols, the complete miscibility was observed for 1-butanol and immiscibility with UCST in the liquid phase for the remaining alcohols. The typical dependence was observed, that with increasing chain length of an alcohol the solubility decreases. The well-known NRTL equation was used to correlate experimental (solid + liquid), SLE and (liquid + liquid), LLE phase equilibria data sets. For the systems containing immiscibility gaps, (IL + an alcohol) parameters of the LLE correlation were used to the prediction of SLE.
Compounds
# Formula Name
1 C17H20F6N2O4S2 1-hexylquinolinium bis(trifluoromethylsulfonyl)amide
2 C6H6 benzene
3 C7H8 toluene
4 C8H10 ethylbenzene
5 C9H12 propylbenzene
6 C4H10O butan-1-ol
7 C6H14O hexan-1-ol
8 C8H18O octan-1-ol
9 C10H22O decan-1-ol
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 1
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Small sample (50 mg) DSC
  • 203
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Small sample (50 mg) DSC
  • 86
  • POMD
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Falling or rolling sphere viscometry
  • 6
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 6
  • POMD
  • 2
  • 1
  • Solid-liquid equilibrium temperature, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • VISOBS
  • 16
  • POMD
  • 2
  • 1
  • Solid-liquid equilibrium temperature, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 2
  • VISOBS
  • 14
  • POMD
  • 3
  • 1
  • Solid-liquid equilibrium temperature, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • VISOBS
  • 21
  • POMD
  • 4
  • 1
  • Solid-liquid equilibrium temperature, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • VISOBS
  • 20
  • POMD
  • 5
  • 1
  • Solid-liquid equilibrium temperature, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • VISOBS
  • 31
  • POMD
  • 6
  • 1
  • Solid-liquid equilibrium temperature, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • VISOBS
  • 22
  • POMD
  • 7
  • 1
  • Solid-liquid equilibrium temperature, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • VISOBS
  • 32
  • POMD
  • 7
  • 1
  • Liquid-liquid equilibrium temperature, K ; Liquid mixture 1
  • Mole fraction - 1; Liquid mixture 1
  • Pressure, kPa; Liquid mixture 1
  • Liquid mixture 1
  • Liquid mixture 2
  • VISOBS
  • 20
  • POMD
  • 8
  • 1
  • Solid-liquid equilibrium temperature, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • VISOBS
  • 32
  • POMD
  • 8
  • 1
  • Liquid-liquid equilibrium temperature, K ; Liquid mixture 1
  • Mole fraction - 1; Liquid mixture 1
  • Pressure, kPa; Liquid mixture 1
  • Liquid mixture 1
  • Liquid mixture 2
  • VISOBS
  • 25
  • POMD
  • 9
  • 1
  • Solid-liquid equilibrium temperature, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Crystal - 1
  • VISOBS
  • 24
  • POMD
  • 9
  • 1
  • Liquid-liquid equilibrium temperature, K ; Liquid mixture 1
  • Mole fraction - 1; Liquid mixture 1
  • Pressure, kPa; Liquid mixture 1
  • Liquid mixture 1
  • Liquid mixture 2
  • VISOBS
  • 18