Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Thermodynamic and physicochemical properties of binary mixtures of nitromethane with {2-methoxyethanol + 2-butoxyethanol} systems at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K

Cwiklinska, A. [Aneta], Kinart, C. M.[Cezary M.]
J. Chem. Thermodyn. 2011, 43, 3, 420-429
ABSTRACT
The density, relative permittivity, viscosity and speed of sound at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K in the binary mixtures of nitromethane with 2-methoxyethanol and 2-butoxyethanol have been measured as a function of composition. From the experimental results, the excess molar volumes, excess Gibbs free energy of activation for viscous flow, excess isentropic compressibility and the deviations in the relative permittivity, viscosity, and speed of sound from a mole fraction average have been calculated. The viscosity data, at T = 298.15 K, were correlated with equations of Hind et al., Grunberg and Nissan, Frenkel, and McAllister. The results are discussed in terms of intermolecular interactions and structure of studied binary mixtures.
Compounds
# Formula Name
1 CH3NO2 nitromethane
2 C3H8O2 2-methoxyethan-1-ol
3 C6H14O2 2-butoxyethan-1-ol
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 75
  • POMD
  • 1
  • 2
  • Relative permittivity at various frequencies ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • AC method
  • 65
  • POMD
  • 1
  • 2
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Resonance method
  • 65
  • POMD
  • 1
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Pycnometric method
  • 65
  • POMD
  • 1
  • 2
  • Excess molar volume, m3/mol ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Calculated with densities of this investigation
  • 65
  • POMD
  • 1
  • 3
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 75
  • POMD
  • 1
  • 3
  • Relative permittivity at various frequencies ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Frequency, MHz; Liquid
  • Liquid
  • AC method
  • 65
  • POMD
  • 1
  • 3
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Resonance method
  • 65
  • POMD
  • 1
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Pycnometric method
  • 65
  • POMD
  • 1
  • 3
  • Excess molar volume, m3/mol ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Calculated with densities of this investigation
  • 65