Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

A calorimetric and computational study of the thermochemistry of halogenated 1-phenylpyrrole derivatives

Santos, A. F. L. O. M.[Ana Filipa L.O.M.], Silva, M. A. V. R. d.[Manuel A.V. Ribeiro da]
J. Chem. Thermodyn. 2010, 42, 12, 1441-1450
ABSTRACT
The standard molar enthalpies of formation, in the crystalline phase, of three halogenated 1-phenylpyrrole derivatives, namely 1-(4-fluorophenyl)pyrrole, 1-(4-chlorophenyl)pyrrole, and 1-(4-iodophenyl)pyrrole were derived from the respective enthalpies of combustion, measured by rotating-bomb combustion calorimetry. Their enthalpies of sublimation, at T = 298.15 K, were obtained from the Knudsen mass-loss effusion technique. From these two experimental parameters, the standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, of 1-(4-fluorophenyl)pyrrole, 1-(4-chlorophenyl)pyrrole, and 1-(4-iodophenyl)pyrrole were calculated, respectively, as (26.2 +- 2.4) kJ * mol-1, (196.2 +- 2.5) kJ * mol-1, and (311.5 +- 2.4) kJ * mol-1. The gas-phase enthalpies of formation of both fluorine and chlorine compounds were estimated by G3(MP2)//B3LYP computations. For the iodine compound, the B3LYP/6-311G(d):ECP46MDF approach was employed. Additionally, the DFT calculations were extended to estimate the enthalpy of formation of the bromine derivative, 1-(4-bromophenyl)pyrrole, performed at the B3LYP/6-311G(d) level of theory.
Compounds
# Formula Name
1 I2 iodine
2 CO2 carbon dioxide
3 N2 nitrogen
4 H2O water
5 O2 oxygen
6 FH hydrogen fluoride
7 ClH hydrogen chloride
8 C10H8IN 1-(4-iodophenyl)pyrrole
9 C10H8ClN 1-(4-chlorophenyl)-1H-pyrrole
10 C10H8FN 1-(4-fluorophenyl)pyrrole
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 8
  • Vapor or sublimation pressure, kPa ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Calculated from knudsen effusion weight loss
  • 36
  • POMD
  • 9
  • Vapor or sublimation pressure, kPa ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Calculated from knudsen effusion weight loss
  • 27
  • POMD
  • 10
  • Vapor or sublimation pressure, kPa ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Calculated from knudsen effusion weight loss
  • 27
  • RXND
  • 1
  • 8
  • 2
  • 3
  • 4
  • 5
  • Specific internal energy of reaction at constant volume, J/g
  • Rotating bomb calorimetry
  • 1
  • RXND
  • 6
  • 10
  • 2
  • 3
  • 4
  • 5
  • Specific internal energy of reaction at constant volume, J/g
  • Rotating bomb calorimetry
  • 1
  • RXND
  • 9
  • 7
  • 2
  • 3
  • 4
  • 5
  • Specific internal energy of reaction at constant volume, J/g
  • Rotating bomb calorimetry
  • 1