Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Enthalpies of combustion, vapour pressures, and enthalpies of sublimation of the 1,5- and 1,8-diaminonaphthalenes

Ribeiro da Silva, M. A. V.[Manuel A. V.], Lobo Ferreira, A. I. M. C.[Ana I.M.C.], Santos, A. F. L. O. M.[Ana Filipa L.O.M.], Ferreira, C. M. A.[Cristiana M.A.], Barros, D. C. B.[Delfina C.B.], Reis, J. A. C.[Joana A.C.], Costa, J. C. S.[Jose C.S.], Calvinho, M. M. G.[Maria Miguel G.], Rocha, S. I. A.[Sonia I.A.], Pinto, S. P.[Sonia P.], Freire, S. S. L.[Sonia S.L.], Almeida, S. M.[Suzete M.], Guimaraes, V. S.[Vanessa S.], Almeida, V. N. M.[Vasco N.M.]
J. Chem. Thermodyn. 2010, 42, 3, 371-379
ABSTRACT
The standard (p = 0.1 MPa) molar enthalpies of formation, in the crystalline state, of 1,5-diaminonaphthalene and 1,8-diaminonaphthalene were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static-bomb combustion calorimetry. The Knudsen mass-loss effusion technique was used to measure the dependence of the vapour pressure of the solid isomers of diaminonaphthalene with the temperature, from which the standard molar enthalpies of sublimation were derived using the Clausius Clapeyron equation. Combining these two experimental values, the gas-phase standard molar enthalpies of formation, at T = 298.15 K, were derived and compared with those estimated using two different empirical methods of DfH mogP estimation: the Cox scheme and the Benson s Group Method. Moreover, the standard (p = 0.1 MPa) molar entropies and Gibbs energies of sublimation, at T = 298.15 K, were derived for the two diaminonaphthalene isomers.
Compounds
# Formula Name
1 CO2 carbon dioxide
2 N2 nitrogen
3 H2O water
4 O2 oxygen
5 C graphite
6 H2 hydrogen
7 C10H10N2 1,5-diaminonaphthalene
8 C10H10N2 1,8-diaminonaphthalene
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 7
  • Molar enthalpy of vaporization or sublimation, kJ/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Clausius-Clapeyron equation and measured Psat
  • 1
  • POMD
  • 7
  • Vapor or sublimation pressure, kPa ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Calculated from knudsen effusion weight loss
  • 36
  • POMD
  • 8
  • Molar enthalpy of vaporization or sublimation, kJ/mol ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Clausius-Clapeyron equation and measured Psat
  • 1
  • POMD
  • 8
  • Vapor or sublimation pressure, kPa ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Calculated from knudsen effusion weight loss
  • 39
  • RXND
  • 7
  • 1
  • 2
  • 3
  • 4
  • Specific internal energy of reaction at constant volume, J/g
  • Static bomb calorimetry
  • 1
  • RXND
  • 8
  • 1
  • 2
  • 3
  • 4
  • Specific internal energy of reaction at constant volume, J/g
  • Static bomb calorimetry
  • 1
  • RXND
  • 7
  • 5
  • 6
  • 2
  • Molar enthalpy of reaction, kJ/mol
  • Static bomb calorimetry
  • 1
  • RXND
  • 7
  • 5
  • 6
  • 2
  • Molar enthalpy of reaction, kJ/mol
  • Static bomb calorimetry
  • 1
  • RXND
  • 8
  • 5
  • 6
  • 2
  • Molar enthalpy of reaction, kJ/mol
  • Static bomb calorimetry
  • 1
  • RXND
  • 8
  • 5
  • 6
  • 2
  • Molar enthalpy of reaction, kJ/mol
  • Static bomb calorimetry
  • 1