Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Experimental thermochemical study of 2,5- and 2,6-dichloro-4-nitroanilines

Silva, M. A. V. R. d.[Manuel A.V. Ribeiro da], Silva, M. D. M. C. R. d.[Maria D.M.C. Ribeiro da], Ferreira, A. I. M. C. L.[Ana I.M.C. Lobo], Santos, A. F. L. O. M.[Ana Filipa L.O.M.], Galvao, T. L. P.[Tiago L.P.]
J. Chem. Thermodyn. 2009, 41, 10, 1074-1080
ABSTRACT
The standard (p = 0.1 MPa) molar enthalpies of formation of 2,5- and 2,6-dichloro-4-nitroanilines, in the gaseous phase, at T = 298.15 K, were derived from the combination of the values of the standard molar enthalpies of formation in the crystalline phase, at T = 298.15 K, and the standard molar enthalpies of sublimation, of each compound, at the same temperature. The standard molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, were derived from the standard massic energies of combustion of the two isomers, in oxygen, at T = 298.15 K, measured by rotating-bomb combustion calorimetry. The standard molar enthalpies of sublimation were calculated, by application of the Clausius Clapeyron equation, to the vapour pressures at several temperatures measured by Knudsen effusion technique. The values of the standard (p = 0.1 MPa) molar enthalpies of formation of 2,5- and 2,6-dichloro-4-nitroanilines, in the gaseous phase, at T = 298.15 K, were compared with those estimated by the Cox scheme.
Compounds
# Formula Name
1 ClH hydrogen chloride
2 CO2 carbon dioxide
3 N2 nitrogen
4 H2O water
5 O2 oxygen
6 C6H4Cl2N2O2 2,5-dichloro-4-nitrobenzenamine
7 C6H4Cl2N2O2 1-amino-2,6-dichloro-4-nitrobenzene
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 6
  • Vapor or sublimation pressure, kPa ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Calculated from knudsen effusion weight loss
  • 36
  • POMD
  • 7
  • Vapor or sublimation pressure, kPa ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Calculated from knudsen effusion weight loss
  • 35
  • RXND
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • Specific internal energy of reaction at constant volume, J/g
  • Rotating bomb calorimetry
  • 1
  • RXND
  • 7
  • 1
  • 2
  • 3
  • 4
  • 5
  • Specific internal energy of reaction at constant volume, J/g
  • Rotating bomb calorimetry
  • 1