Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Phase transition thermodynamics of phenyl and biphenyl naphthalenes

Rocha, M. A. A.[Marisa A.A.], Lima, C. F. R. A. C.[Carlos F.R.A.C.], Santos, L. M. N. B. F.[Luis M. N. B. F.]
J. Chem. Thermodyn. 2008, 40, 9, 1458-1463
ABSTRACT
This work is focussed on the thermodynamics of phase transition for some naphthalene derivatives: 1-phenylnaphthalene, 2-phenylnaphthalene, 2-(biphen-3-yl)naphthalene, and 2-(biphen-4-yl)naphthalene. The Knudsen mass-loss effusion technique was used to measure the vapour pressures of the following compounds: 2-phenylnaphthalene (cr), between T= (333.11 and 353.19) K; 2-(biphen-4-yl)naphthalene (cr), between T = (405.17 and 437.19) K; 2-(biphen-3-yl)naphthalene (l), between T = (381.08 and 413.17) K. From the temperature dependence of the vapour pressure, the standard, (p = 105 Pa), molar enthalpies, entropies, and Gibbs free energies of sublimation for 2-phenylnaphthalene and 2-(biphen-4-yl)naphthalene were derived as well as the standard molar enthalpy, entropy, and Gibbs free energy of vaporization for 2-(biphen-3-yl)naphthalene at 298.15 K. The temperatures and the standard molar enthalpies of fusion were measured by differential scanning calorimetry and the standard molar entropies of fusion were derived. For 1-phenylnaphthalene the standard molar enthalpy of vaporization at 298.15 K was measured directly using the Calvet microcalorimetry drop method. The 1-phenylnaphthalene is liquid at room temperature, showing a remarkably low melting point when compared to the 2-phenylnaphthalene isomer and naphthalene. A regular decrease of volatility with the increase of a phenyl group in para position at the 2-naphthalene derivatives was observed. In 2-(biphen- 3-yl)naphthalene, the meta substitution of the phenyl group results in a significantly higher volatility than in the respective para isomer.
Compounds
# Formula Name
1 C16H12 2-phenylnaphthalene
2 C16H12 1-phenylnaphthalene
3 C22H16 2-(biphen-4-yl)naphthalene
4 C22H16 2-(biphen-3-yl)naphthalene
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 1
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 1
  • Vapor or sublimation pressure, kPa ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Calculated from knudsen effusion weight loss
  • 26
  • POMD
  • 2
  • Molar enthalpy of vaporization or sublimation, kJ/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Calvet microcalorimetry
  • 1
  • POMD
  • 3
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 3
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 3
  • Vapor or sublimation pressure, kPa ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Calculated from knudsen effusion weight loss
  • 36
  • POMD
  • 4
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 4
  • Normal melting temperature, K ; Crystal
  • Crystal
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 4
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Calculated from knudsen effusion weight loss
  • 22