Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Thermodynamic properties of 1,2-dihydronaphthalene: Glassy crystals and missing entropy

Chirico, R. D.[Robert D.], Steele, W. V.[William V.]
J. Chem. Thermodyn. 2008, 40, 5, 806-817
ABSTRACT
Measurements leading to the calculation of the standard thermodynamic properties for gaseous 1,2-dihydronaphthalene (Chemical Abstracts registry number [447-53-0]) are reported. Experimental methods include oxygen combustion-bomb calorimetry, adiabatic heat-capacity calorimetry, vibrating-tube densitometry, comparative ebulliometry, and inclined-piston gauge manometry. 1,2-Dihydronaphthalene decomposed significantly when heated to temperatures above T = 480 K. Consequently, the critical temperature, critical pressure, and critical density were estimated. Standard molar entropies, standard molar enthalpies, and standard molar Gibbs free energies of formation were derived at selected temperatures between T = 250 K and 500 K. The standard state is defined as the ideal gas at the pressure p = p = 101.325 kPa. Standard entropies are compared with those calculated statistically on the basis of assigned vibrational spectra from the literature for the vapor phase. A large and near constant difference between the entropies calculated statistically and those determined calorimetrically was observed over the entire temperature range studied. Two glass-like features are observed in the heat capacity against temperature curve for the solid state, indicating that the crystals are disordered. A quantitative accounting for the entropy discrepancy is proposed based on possible molecular orientations of 1,2-dihydronaphthalene. Results are compared with experimental values reported in the literature.
Compounds
# Formula Name
1 CO2 carbon dioxide
2 H2O water
3 O2 oxygen
4 C10H10 1,2-dihydronaphthalene
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 4
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal 1
  • Crystal 1
  • Liquid
  • Air at 1 atmosphere
  • Adiabatic calorimetry
  • 1
  • POMD
  • 4
  • Triple point temperature, K ; Crystal 1
  • Crystal 1
  • Liquid
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 4
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 3
  • Temperature, K; Crystal 3
  • Pressure, kPa; Crystal 3
  • Crystal 3
  • Vacuum adiabatic calorimetry
  • 14
  • POMD
  • 4
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Vacuum adiabatic calorimetry
  • 4
  • POMD
  • 4
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Vacuum adiabatic calorimetry
  • 6
  • POMD
  • 4
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vacuum adiabatic calorimetry
  • 16
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal 3
  • Temperature, K; Crystal 3
  • Crystal 3
  • Gas
  • Vacuum adiabatic calorimetry
  • 41
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Crystal 2
  • Gas
  • VADIAC:UFactor:2
  • 15
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Crystal 1
  • Gas
  • Small (less than 1 g) adiabatic calorimetry
  • 13
  • POMD
  • 4
  • Molar heat capacity at saturation pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Small (less than 1 g) adiabatic calorimetry
  • 16
  • POMD
  • 4
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal 3
  • Temperature, K; Crystal 3
  • Pressure, kPa; Crystal 3
  • Crystal 3
  • Vacuum adiabatic calorimetry
  • 14
  • POMD
  • 4
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Vacuum adiabatic calorimetry
  • 4
  • POMD
  • 4
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Vacuum adiabatic calorimetry
  • 6
  • POMD
  • 4
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vacuum adiabatic calorimetry
  • 16
  • POMD
  • 4
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Inclined piston gauge
  • 10
  • POMD
  • 4
  • Vapor or sublimation pressure, kPa ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Twin ebulliometer
  • 20
  • POMD
  • 4
  • Molar entropy, J/K/mol ; Crystal 3
  • Temperature, K; Crystal 3
  • Pressure, kPa; Crystal 3
  • Crystal 3
  • Vacuum adiabatic calorimetry
  • 14
  • POMD
  • 4
  • Molar entropy, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Vacuum adiabatic calorimetry
  • 4
  • POMD
  • 4
  • Molar entropy, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Vacuum adiabatic calorimetry
  • 6
  • POMD
  • 4
  • Molar entropy, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vacuum adiabatic calorimetry
  • 16
  • POMD
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Gas
  • Vibrating tube method
  • 7
  • RXND
  • 4
  • 1
  • 2
  • 3
  • Specific internal energy of reaction at constant volume, J/g
  • Rotating bomb calorimetry
  • 1