Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Structural studies of cyclic ureas: 1. Enthalpies of formation of imidazolidin-2-one and N,N0-trimethyleneurea

Ribeiro da Silva, M. D. M. C.[Maria D. M. C.], Ribeiro da Silva, M. A. V.[Manuel A. V.], Freitas, V. L. S.[Vera L.S.], Roux, M. V.[MarIa Victoria], Jimenez, P.[Pilar], Temprado, M.[Manuel], Davalos, J. Z.[Juan Z.], Cabildo, Pilar, Claramunt, R. M.[Rosa M.], Elguero, J.[Jose]
J. Chem. Thermodyn. 2008, 40, 3, 386-393
ABSTRACT
A thermophysical and thermochemical study has been carried out for crystalline imidazolidin-2-one and N,N0-trimethyleneurea [tetrahydropyrimidin- 2(1H)-one]. The thermophysical study was made by differential scanning calorimetry, d.s.c., in the temperature intervals between T = 268 K and their respective melting temperatures. Several solid solid transitions have been detected in imidazolidin-2- one. The standard (p = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, for crystalline imidazolidin-2-one and N,N0-trimethyleneurea [tetrahydropyrimidin-2(1H)-one], were determined using static-bomb combustion calorimetry. The standard molar enthalpies of sublimation, at T = 298.15 K, for the two compounds were derived from the variation of their vapour pressures, measured by the Knudsen effusion method, with the temperature. These two thermochemical parameters yielded the standard molar enthalpies of formation of the two cyclic urea compounds studied in the gaseous phase at T = 298.15 K. These values are discussed in terms of molecular structural contributions and interpreted on the bases of the benzo-condensed effect and of the ring strain of imidazolidin-2-one.
Compounds
# Formula Name
1 CO2 carbon dioxide
2 N2 nitrogen
3 H2O water
4 O2 oxygen
5 C3H6N2O 2-imidazolidinone
6 C4H8N2O tetrahydropyrimidin-2(1H)-one
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 5
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal 1
  • Crystal 1
  • Liquid
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 5
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal 2
  • Crystal 2
  • Crystal 1
  • Air at 1 atmosphere
  • DSC
  • 1
  • POMD
  • 5
  • Triple point temperature, K ; Crystal 2
  • Crystal 2
  • Crystal 1
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 5
  • Triple point temperature, K ; Crystal 1
  • Crystal 1
  • Liquid
  • Air at 1 atmosphere
  • DTA
  • 1
  • POMD
  • 5
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Small sample (50 mg) DSC
  • 17
  • POMD
  • 5
  • Vapor or sublimation pressure, kPa ; Crystal 2
  • Temperature, K; Crystal 2
  • Crystal 2
  • Gas
  • Calculated from knudsen effusion weight loss
  • 29
  • POMD
  • 5
  • Vapor or sublimation pressure, kPa ; Crystal 1
  • Temperature, K; Crystal 1
  • Crystal 1
  • Gas
  • Calculated from knudsen effusion weight loss
  • 6
  • POMD
  • 6
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Small sample (50 mg) DSC
  • 43
  • POMD
  • 6
  • Vapor or sublimation pressure, kPa ; Crystal
  • Temperature, K; Crystal
  • Crystal
  • Gas
  • Calculated from knudsen effusion weight loss
  • 31
  • RXND
  • 5
  • 1
  • 2
  • 3
  • 4
  • Specific internal energy of reaction at constant volume, J/g
  • Static bomb calorimetry
  • 1
  • RXND
  • 6
  • 1
  • 2
  • 3
  • 4
  • Specific internal energy of reaction at constant volume, J/g
  • Static bomb calorimetry
  • 1