Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Thermodynamic properties of 1-aminoadamantane

Bazyleva, A. B.[Ala B.], Blokhin, A. V.[Andrey V.], Kabo, A. G.[Andrey G.], Kabo, G. J.[Gennady J.], Emelyanenko, V. N.[Vladimir N.], Verevkin, S. P.[Sergey P.]
J. Chem. Thermodyn. 2008, 40, 3, 509-522
ABSTRACT
The heat capacity of crystalline 1-aminoadamantane over the temperature range from (5 to 370) K, the temperatures and the enthalpies of its solid-to-solid phase transitions, Ttrs,1 = (241.4 +- 0.2) K and Dtrs;1H m 1/4 o1716 10P J mol 1; Ttrs,2 = (284.6 +- 0.1) K and Dtrs;2H m 1/4 o5309 5P J mol 1, were obtained by the adiabatic calorimetry. The thermodynamic functions of the compound in the crystalline state were derived. The saturated vapour pressure and the sublimation enthalpy fDsubH mo298:15 KP 1/4 o61:65 0:63P kJ mol 1g were determined from the results of the measurements by the effusion Knudsen method and by the transpiration method. The enthalpy of combustion and the enthalpy of formation for crystalline 1-aminoadamantane were measured in a static-bomb isoperibol combustion calorimeter: DcH mocr;298:15 KP 1/4 o 6169:2 1:9P kJ mol 1 and DfH mocr;298:15 KP 1/4 o 195:4 2:3P kJ mol 1. The thermodynamic properties in the ideal gaseous state were calculated by the statistical thermodynamics method. The molecular and spectral data for 1-aminoadamantane were obtained from quantum-chemical calculations (B3LYP/6-31+G*) and from Raman and i.r. spectroscopic studies.
Compounds
# Formula Name
1 CO2 carbon dioxide
2 N2 nitrogen
3 H2O water
4 O2 oxygen
5 C10H17N tricyclo(3.3.1.1:3,7)decan-1-amine
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 5
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal 3
  • Crystal 3
  • Crystal 2
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 5
  • Molar enthalpy of transition or fusion, kJ/mol ; Crystal 2
  • Crystal 2
  • Crystal 1
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 5
  • Triple point temperature, K ; Crystal 3
  • Crystal 3
  • Crystal 2
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 5
  • Triple point temperature, K ; Crystal 2
  • Crystal 2
  • Crystal 1
  • Gas
  • Adiabatic calorimetry
  • 1
  • POMD
  • 5
  • Mass density, kg/m3 ; Crystal 3
  • Temperature, K; Crystal 3
  • Pressure, kPa; Crystal 3
  • Crystal 3
  • Pycnometric method
  • 1
  • POMD
  • 5
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 3
  • Temperature, K; Crystal 3
  • Pressure, kPa; Crystal 3
  • Crystal 3
  • Small (less than 1 g) adiabatic calorimetry
  • 30
  • POMD
  • 5
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Small (less than 1 g) adiabatic calorimetry
  • 6
  • POMD
  • 5
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small (less than 1 g) adiabatic calorimetry
  • 11
  • POMD
  • 5
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal 3
  • Temperature, K; Crystal 3
  • Crystal 3
  • Gas
  • Small (less than 1 g) adiabatic calorimetry
  • 205
  • POMD
  • 5
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Crystal 2
  • Gas
  • SMALLAD:UFactor:4
  • 25
  • POMD
  • 5
  • Molar heat capacity at saturation pressure, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Crystal 1
  • Gas
  • Small (less than 1 g) adiabatic calorimetry
  • 66
  • POMD
  • 5
  • Vapor or sublimation pressure, kPa ; Crystal 1
  • Temperature, K; Crystal 1
  • Crystal 1
  • Gas
  • Calculated from knudsen effusion weight loss
  • 9
  • POMD
  • 5
  • Vapor or sublimation pressure, kPa ; Crystal 1
  • Temperature, K; Crystal 1
  • Crystal 1
  • Gas
  • Transpiration method
  • 19
  • POMD
  • 5
  • Molar entropy, J/K/mol ; Crystal 3
  • Temperature, K; Crystal 3
  • Pressure, kPa; Crystal 3
  • Crystal 3
  • Small (less than 1 g) adiabatic calorimetry
  • 30
  • POMD
  • 5
  • Molar entropy, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Small (less than 1 g) adiabatic calorimetry
  • 6
  • POMD
  • 5
  • Molar entropy, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small (less than 1 g) adiabatic calorimetry
  • 11
  • POMD
  • 5
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal 3
  • Temperature, K; Crystal 3
  • Pressure, kPa; Crystal 3
  • Crystal 3
  • Small (less than 1 g) adiabatic calorimetry
  • 30
  • POMD
  • 5
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal 2
  • Temperature, K; Crystal 2
  • Pressure, kPa; Crystal 2
  • Crystal 2
  • Small (less than 1 g) adiabatic calorimetry
  • 6
  • POMD
  • 5
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal 1
  • Temperature, K; Crystal 1
  • Pressure, kPa; Crystal 1
  • Crystal 1
  • Small (less than 1 g) adiabatic calorimetry
  • 11
  • RXND
  • 5
  • 1
  • 2
  • 3
  • 4
  • Molar internal energy of reaction at constant volume, kJ/mol
  • Static bomb calorimetry
  • 1