Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Heat capacities and derived thermodynamic properties of lithium, sodium, and potassium disilicates from T=(5 to 350)K in both vitreous and crystalline states

Labban, A.[Abdul], Berg, R.[Roger], Zhou, J.[Jian], Johnson, D. A.[David A.], Westrum, Jr., E. F.[Edgar F.]
J. Chem. Thermodyn. 2007, 39, 7, 991-1000
ABSTRACT
Cryogenic heat capacities determined by equilibrium adiabatic calorimetry from T = (6 to 350) K on Li, Na, and K disilicates in both crystalline and vitreous phases are adjusted to end member composition and the vitreous/crystal difference ascertained. The thermophysical properties of these and related phases are estimated, compared, and updated. The values at T = 298.15 K of {S(T) - S(0)}/R for stoichiometric compositions of alkali disilicate (M2O * 2SiO2): vitreous, crystal: Li, 16.30, 14.65; Na, 20.67, 19.47; and K, 23.26, 23.00. Entropy differences confirm greater disorder in the vitreous compounds compared with the crystalline compounds. The entropy data also show that disorder increases with decreasing atomic mass of the alkali ion.
Compounds
# Formula Name
1 Li2O5Si2 lithium disilicate
2 Na2O5Si2 sodium disilicate
3 K2O5Si2 potassium disilicate
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Glass
  • Temperature, K; Glass
  • Pressure, kPa; Glass
  • Glass
  • Vacuum adiabatic calorimetry
  • 65
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 61
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Glass
  • Temperature, K; Glass
  • Pressure, kPa; Glass
  • Glass
  • Vacuum adiabatic calorimetry
  • 29
  • POMD
  • 1
  • Molar entropy, J/K/mol ; Glass
  • Temperature, K; Glass
  • Pressure, kPa; Glass
  • Glass
  • Vacuum adiabatic calorimetry
  • 29
  • POMD
  • 1
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Glass
  • Temperature, K; Glass
  • Pressure, kPa; Glass
  • Glass
  • Vacuum adiabatic calorimetry
  • 28
  • POMD
  • 1
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 29
  • POMD
  • 1
  • Molar entropy, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 29
  • POMD
  • 1
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 28
  • POMD
  • 2
  • Molar heat capacity at constant pressure, J/K/mol ; Glass
  • Temperature, K; Glass
  • Pressure, kPa; Glass
  • Glass
  • Vacuum adiabatic calorimetry
  • 56
  • POMD
  • 2
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 65
  • POMD
  • 2
  • Molar heat capacity at constant pressure, J/K/mol ; Glass
  • Temperature, K; Glass
  • Pressure, kPa; Glass
  • Glass
  • Vacuum adiabatic calorimetry
  • 29
  • POMD
  • 2
  • Molar entropy, J/K/mol ; Glass
  • Temperature, K; Glass
  • Pressure, kPa; Glass
  • Glass
  • Vacuum adiabatic calorimetry
  • 29
  • POMD
  • 2
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Glass
  • Temperature, K; Glass
  • Pressure, kPa; Glass
  • Glass
  • Vacuum adiabatic calorimetry
  • 28
  • POMD
  • 2
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 29
  • POMD
  • 2
  • Molar entropy, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 29
  • POMD
  • 2
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 28
  • POMD
  • 3
  • Molar heat capacity at constant pressure, J/K/mol ; Glass
  • Temperature, K; Glass
  • Pressure, kPa; Glass
  • Glass
  • Vacuum adiabatic calorimetry
  • 57
  • POMD
  • 3
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 62
  • POMD
  • 3
  • Molar heat capacity at constant pressure, J/K/mol ; Glass
  • Temperature, K; Glass
  • Pressure, kPa; Glass
  • Glass
  • Vacuum adiabatic calorimetry
  • 29
  • POMD
  • 3
  • Molar entropy, J/K/mol ; Glass
  • Temperature, K; Glass
  • Pressure, kPa; Glass
  • Glass
  • Vacuum adiabatic calorimetry
  • 29
  • POMD
  • 3
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Glass
  • Temperature, K; Glass
  • Pressure, kPa; Glass
  • Glass
  • Vacuum adiabatic calorimetry
  • 28
  • POMD
  • 3
  • Molar heat capacity at constant pressure, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 29
  • POMD
  • 3
  • Molar entropy, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 29
  • POMD
  • 3
  • Molar enthalpy function {Hm(T)-Hm(0)}/T, J/K/mol ; Crystal
  • Temperature, K; Crystal
  • Pressure, kPa; Crystal
  • Crystal
  • Vacuum adiabatic calorimetry
  • 28