Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Excess molar volumes, viscosities, and speeds of sound of the ternary mixture {1-heptanol (1) + trichloroethylene (2) + methylcyclohexane (3)} at T = 298.15 K

Iloukhani, H.[Hossein], Samiey, B.[Babak]
J. Chem. Thermodyn. 2007, 39, 2, 206-217
ABSTRACT
Densities (?), viscosities (?), and speeds of sound (u) of the ternary mixture (1-heptanol + trichloroethylene + methylcyclohexane) and the involved binary mixtures (1-heptanol + trichloroethylene), (1-heptanol + methylcyclohexane), and (trichloroethylene + methylcyclohexane) at 298.15 K were measured over the whole composition range. The data obtained are used to calculate excess molar volumes (VE), excess isobaric thermal expansivity (aE), viscosity deviations (??), excess Gibbs free energies of activation of viscous flow (?G*E), and excess isentropic compressibilities of the binary and ternary mixtures. The data of the binary systems were fitted to the Redlich Kister equation while the best correlation method for the ternary system was found using the Nagata equation. Viscosities, speeds of sound and isentropic compressibilities of the binary and ternary mixtures have been correlated by means of several empirical and semi-empirical equations. The best correlation method for viscosities of binary systems is found using the Iulan et al. equation and for the ternary system using the McAllister equation. The best correlation method for speeds of sound and isentropic compressibilities of the binary systems is found using the IMR and for the ternary system using the IMR and JR.
Compounds
# Formula Name
1 C7H16O heptan-1-ol
2 C2Cl4 tetrachloroethene
3 C7H14 methylcyclohexane
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 1
  • POMD
  • 1
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 1
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 1
  • POMD
  • 2
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 1
  • POMD
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 1
  • POMD
  • 3
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 1
  • POMD
  • 3
  • Speed of sound, m/s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 1
  • POMD
  • 1
  • 2
  • Viscosity, Pa*s ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 12
  • POMD
  • 1
  • 2
  • Speed of sound, m/s ; Liquid
  • Mole fraction - 1; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 14
  • POMD
  • 1
  • 2
  • Mass density, kg/m3 ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Vibrating tube method
  • 14
  • POMD
  • 3
  • 1
  • Viscosity, Pa*s ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 10
  • POMD
  • 3
  • 1
  • Speed of sound, m/s ; Liquid
  • Mole fraction - 1; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 12
  • POMD
  • 3
  • 1
  • Mass density, kg/m3 ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Vibrating tube method
  • 14
  • POMD
  • 3
  • 2
  • Viscosity, Pa*s ; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 10
  • POMD
  • 3
  • 2
  • Speed of sound, m/s ; Liquid
  • Mole fraction - 2; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 13
  • POMD
  • 3
  • 2
  • Mass density, kg/m3 ; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Vibrating tube method
  • 15
  • POMD
  • 3
  • 1
  • 2
  • Viscosity, Pa*s ; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 44
  • POMD
  • 3
  • 1
  • 2
  • Speed of sound, m/s ; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 2; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Sing-around technique in a fixed-path interferometer
  • 44
  • POMD
  • 3
  • 1
  • 2
  • Mass density, kg/m3 ; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Temperature, K; Liquid
  • Liquid
  • Vibrating tube method
  • 44