The standard (p= 0.1 MPa) massic energies of combustion in oxygen of 1-ethylpiperidine and 2-ethylpiperidine, both in the liquid phase, were measured at T = 298.15 K by static bomb calorimetry. These values were used to derive the standard molar enthalpies of combustion and the standard molar enthalpies of formation, in the condensed phase, for these compounds. Further, the standard molar enthalpies of vaporization, at T = 298.15 K, of these two ethylpiperidine isomers were determined by Calvet microcalorimetry. The combustion calorimetry results together with those from the Calvet microcalorimetry, were used to derive the standard molar enthalpies of formation, at T = 298.15 K, in the gaseous phase. In parallel, theoretical calculations have been carried out for all the ethylpiperidine isomers, enabling the estimation of gas-phase enthalpies of formation for these compounds. The comparison with the present experimental data is very good and, thus, supports the quality of the results calculated for the 3-ethyl and 4-ethylpiperidines.
Compounds
#
Formula
Name
1
CO2
carbon dioxide
2
N2
nitrogen
3
H2O
water
4
O2
oxygen
5
C7H15N
1-ethylpiperidine
6
C7H15N
.alpha.-ethylpiperidine
Datasets
The table above is generated from the ThermoML associated json file (link above).
POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied;
the numbers refer to the table of compounds on the left.
Type
Compound-#
Property
Variable
Constraint
Phase
Method
#Points
POMD
5
Molar enthalpy, kJ/mol ; Gas
Temperature, K; Gas
Pressure, kPa; Gas
Gas
Calvet microcalorimetry
1
POMD
6
Molar enthalpy, kJ/mol ; Gas
Temperature, K; Gas
Pressure, kPa; Gas
Gas
Calvet microcalorimetry
1
RXND
5
1
2
3
4
Specific internal energy of reaction at constant volume, J/g
Static bomb calorimetry
1
RXND
6
1
2
3
4
Specific internal energy of reaction at constant volume, J/g