Thermodynamics Research Center / ThermoML | Journal of Chemical Thermodynamics

Isobaric specific heat capacity of water and aqueous cesium chloride solutions for temperatures between 298K and 370K at p = 0.1 MPa

Lourenco, M. J. V., Santos, F. J. V., Ramires, M. L. V., Nieto de Castro, C. A.
J. Chem. Thermodyn. 2006, 38, 8, 970-974
ABSTRACT
There has been some controversy regarding the uncertainty of measurements of thermal properties using differential scanning calorimeters, namely heat capacity of liquids. A differential scanning calorimeter calibrated in enthalpy and temperature was used to measure the isobaric specific heat capacity of water and aqueous solutions of cesium chloride, in the temperature range 298 K to 370 K, for molalities up 3.2 mol*kg-1, at p = 0.1 MPa, with an estimated uncertainty (ISO definition) better than 1.1%, at a 95% confidence level. The measurements are completely traceable to SI units of energy and temperature. The results obtained were correlated as a function of temperature and molality and compared with other authors, obtained by different methods and permit to conclude that a DSC calibrated by Joule effect is capable of very accurate measurements of the isobaric heat capacity of liquids, traceable to SI units of measurement.
Compounds
# Formula Name
1 ClCs cesium chloride
2 H2O water
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 2
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Large sample (1 g) DSC
  • 15
  • POMD
  • 1
  • 2
  • Molar heat capacity at constant pressure, J/K/mol ; Liquid
  • Temperature, K; Liquid
  • Molality, mol/kg - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Large sample (1 g) DSC
  • 53