Thermodynamics Research Center / ThermoML | Fluid Phase Equilibria

Separation abilities of three acetate-based ionic liquids for benzene-methanol mixture through vapor-liquid equilibrium experiment at 101.3 kPa

Li, Wenxiu, Yin, Haiying, Guo, Hongfan, Li, Jipeng, Zhang, Tao
Fluid Phase Equilib. 2019, 492, 80-87
ABSTRACT
Three ionic liquids (ILs) with acetate anion (1-hexyl-3-methylimidazolium acetate, [HMIM][OAC]; 1-octyl-3-methylimidazolium acetate, [OMIM][OAC]; and 1-decyl-3-methylimidazolium acetate, [DMIM][OAC]) were studied as entrainers for separating the benzene-methanol binary azeotrope. Isobaric vapor-liquid equilibrium (VLE) data for the ternary systems of benzene + methanol + IL were measured at 101.3 kPa. The VLE data were well correlated by using the nonrandom two-liquid (NRTL) model. The relative volatility of benzene to methanol is enhanced with the increase in IL content. The azeotropic phenomenon of benzene-methanol mixture can be completely eliminated when IL content reaches a specific value. After the azeotropy of benzene-methanol mixture is completely eliminated, the separation ability of the three ILs follows the order [HMIM][OAC] greater than [OMIM][OAC] greater than [DMIM][OAC]. The separation abilities of the three ILs were further analyzed with the help of their sigma-profiles.
Compounds
# Formula Name
1 C6H6 benzene
2 CH4O methanol
3 C12H22N2O2 3-hexyl-1-methylimidazolium acetate
4 C14H26N2O2 1-methyl-3-octylimidazolium acetate
5 C16H30N2O2 1-decyl-3-methylimidazolium acetate
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • 2
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 19
  • POMD
  • 1
  • 2
  • Mole fraction - 1 ; Gas
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Chromatography
  • 19
  • POMD
  • 1
  • 2
  • 3
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 54
  • POMD
  • 1
  • 2
  • 3
  • Mole fraction - 1 ; Gas
  • Mole fraction - 1; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Chromatography
  • 54
  • POMD
  • 1
  • 2
  • 3
  • Mole fraction - 3 ; Gas
  • Mole fraction - 1; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Chromatography
  • 54
  • POMD
  • 1
  • 2
  • 4
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 4; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 58
  • POMD
  • 1
  • 2
  • 4
  • Mole fraction - 1 ; Gas
  • Mole fraction - 1; Liquid
  • Mole fraction - 4; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Chromatography
  • 58
  • POMD
  • 1
  • 2
  • 4
  • Mole fraction - 4 ; Gas
  • Mole fraction - 1; Liquid
  • Mole fraction - 4; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Chromatography
  • 58
  • POMD
  • 1
  • 2
  • 5
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 1; Liquid
  • Mole fraction - 5; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 57
  • POMD
  • 1
  • 2
  • 5
  • Mole fraction - 1 ; Gas
  • Mole fraction - 1; Liquid
  • Mole fraction - 5; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Chromatography
  • 57
  • POMD
  • 1
  • 2
  • 5
  • Mole fraction - 5 ; Gas
  • Mole fraction - 1; Liquid
  • Mole fraction - 5; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Chromatography
  • 57