Thermodynamics Research Center / ThermoML | Fluid Phase Equilibria

Vapor-liquid equilibria of monoacylglicerol + monoacylglicerol or alcohol or fatty acid at subatmospheric pressures

Damaceno, D. S.[Daniela S.], Ceriani, R.[Roberta]
Fluid Phase Equilib. 2017, 452, 135-142
ABSTRACT
Partial acylglycerols are relevant minor compounds in the oil/fat industry. They represent important role to the food industry, as surface-active agents and emulsifiers. Also, they are present in the biodiesel production and its separation steps. Therefore, knowledge of their thermophysical properties are critical to product and process design. Considering that, this study aims at determining by the DSC technique novel boiling point data for two monoacylglycerols, namely, monononanoin and monolaurin at subatmospheric pressures, and for four binary fatty mixtures at selected pressures (TPx data), i.e. lauric acid + monocaprylin (3.42 kPa), monononanoin + monolaurin (2.06 kPa), monononanoin + hexadecanol (2.02 kPa), and monolaurin + octadecanol (2.05 kPa). As expected, the system with two monoacylglycerols (monononanoin + monolaurin) showed an ideal behavior. On the other hand, the other systems presented non-ideal behavior. Experimental data were successfully regressed by the Wilson, the NRTL and the UNIQUAC models. Predictive capacity of the UNIFAC method and its different versions was tested, and results indicated that improvements concerning lipid systems are still necessary. These improvements must be based on diverse and qualified experimental data.
Compounds
# Formula Name
1 C11H22O4 2,3-dihydroxypropyl octanoate
2 C12H24O4 2,3-dihydroxypropyl nonanoate
3 C15H30O4 2,3-dihydroxypropyl dodecanoate
4 C12H24O2 dodecanoic acid
5 C16H34O 1-hexadecanol
6 C18H38O 1-octadecanol
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Boiling temperature at pressure P, K ; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 1
  • POMD
  • 2
  • Boiling temperature at pressure P, K ; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 1
  • POMD
  • 2
  • Boiling temperature at pressure P, K ; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 1
  • POMD
  • 2
  • Boiling temperature at pressure P, K ; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 5
  • POMD
  • 3
  • Boiling temperature at pressure P, K ; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 1
  • POMD
  • 3
  • Boiling temperature at pressure P, K ; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 1
  • POMD
  • 3
  • Boiling temperature at pressure P, K ; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 5
  • POMD
  • 4
  • Boiling temperature at pressure P, K ; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 1
  • POMD
  • 5
  • Boiling temperature at pressure P, K ; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 1
  • POMD
  • 6
  • Boiling temperature at pressure P, K ; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 1
  • POMD
  • 4
  • 1
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 4; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 9
  • POMD
  • 2
  • 3
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 2; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 9
  • POMD
  • 5
  • 2
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 5; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 9
  • POMD
  • 6
  • 3
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 6; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • DSC
  • 9