Several novel applications of Deep Eutectic Solvents (DESs) have emerged recently. With a growing interest in the field, there is an urge to understand formation and functioning of these solvents at molecular level, which in turn would assist in further designing of DESs. We herein performed molecular dynamics simulations on three of the commonly used type III DES, viz, reline, ethaline, and glyceline, which are mixtures of urea, ethylene glycol, and glycerol with choline chloride at eutectic composition. Our results explain the role of inter-molecular and intra-molecular hydrogen bonding and energies on formation of these DESs. Furthermore, the ability of these DESs to be altered in a desired way through a simple addition of water makes it versatile solution for several other applications. Hence, simulations are also performed on the aqueous DES solutions, which reveals the effect of water on intermolecular network of interaction existing within these DESs.
Compounds
#
Formula
Name
1
C5H14ClNO
choline chloride
2
CH4N2O
urea
3
C2H6O2
1,2-ethanediol
4
C3H8O3
glycerol
5
H2O
water
Datasets
The table above is generated from the ThermoML associated json file (link above).
POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied;
the numbers refer to the table of compounds on the left.