Thermodynamics Research Center / ThermoML | Fluid Phase Equilibria

New measurements and modeling of high pressure thermodynamic properties of glycols

Crespo, E. A.[Emanuel A.], Costa, J. M. L.[Joao M. L.], Hanafiah, Z. B. M. A.[Zulhakimiali B. M. A.], Kurnia, K. A.[Kiki A.], Oliveira, M. B.[Mariana B.], Llovell, F.[Felix], Vega, L. F.[Lourdes F.], Carvalho, P. J.[Pedro J.], Coutinho, J. A. P.[Joao A. P.]
Fluid Phase Equilib. 2017, 436, 113-123
ABSTRACT
New experimental density data of six glycols, namely ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TriEG), tetraethylene glycol (TeEG), pentaethylene glycol (PeEG) and hexaethylene glycol (HeEG), and a polyethyleneglycol (PEG 400) were determined in a wide range of temperatures (283 to 363) K and pressures (0.1 to 95) MPa. The experimental density data was first correlated, as function of temperature and pressure, using the modified Tait-Tammann equation, and the derivative properties, such as isobaric thermal expansion coefficients and the isothermal compressibility, were estimated. It is shown that the isobaric thermal expansivity converges to a cross-over point that, although commonly observed for non-associating compounds, is here reported for the first time for the studied glycols. This denotes the presence of hydrogen bonds, mainly dominated by dispersive interactions, breaking and decreasing intermolecular interactions as the temperature and the number of glycols ethoxy groups increase. The study is completed with the modeling of the experimental data using the soft-SAFT equation of state. A molecular model, considering the glycol molecules as LJ chains with one associating site at each of the compounds' end groups (hydroxyl groups) is proposed for all the glycols, allowing the EoS to provide an excellent description of the glycols pVT surface. Additionally, the optimized parameters were correlated with the compound's molecular weight, providing a good prediction of the PEG400 density and the compounds' derivative properties.
Compounds
# Formula Name
1 C2H6O2 1,2-ethanediol
2 C4H10O3 diethylene glycol
3 C6H14O4 triethylene glycol
4 C8H18O5 tetraethylene glycol
5 C10H22O6 3,6,9,12-tetraoxatetradecane-1,14-diol
6 C12H26O7 3,6,9,12,15-pentaoxaheptadecane-1,17-diol
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 216
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 216
  • POMD
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 216
  • POMD
  • 4
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 216
  • POMD
  • 5
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 216
  • POMD
  • 6
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 216