Thermodynamics Research Center / ThermoML | Fluid Phase Equilibria

Distribution of MEG and methanol in well-defined hydrocarbon and water systems: Experimental measurement and modeling using the CPA EoS

Riaz, M.[Muhammad], Yussuf, M. A.[Mustafe A.], Kontogeorgis, G. M.[Georgios M.], Stenby, E. H.[Erling H.], Yan, W.[Wei], Solbraa, E.[Even]
Fluid Phase Equilib. 2013, 337, 298-310
ABSTRACT
Liquid liquid equilibria data for two binary and two ternary systems are reported in the temperature range of 303.15 323.15 K at atmospheric pressure. The binary systems measured are n-nonane + MEG and ethylbenzene + MEG and the ternary systems are n-nonane + MEG + water and ethylbenzene + MEG + water. These data are satisfactorily correlated (binaries) and predicted (ternaries) using Cubic Plus Association (CPA) equation of state (EoS). CPA is also applied to binary LLE of aromatic hydrocarbon + water and VLE of methane + methanol. Finally the distribution of water and inhibitors (methanol and MEG) in various phases is modeled using CPA. The hydrocarbon phase consists of mixture-1 (methane, ethane, n-butane) or mixture-2 (methane, ethane, propane, n-butane, n-heptane, toluene and n-decane). CPA can satisfactorily predict the water content in the gas phase of the multicomponent systems containing mixture-1 over a range of temperatures and pressures. Similarly the methanol content in the gas phase of mixture-1 + water + methanol systems is predicted satisfactorily with accuracy within experimental uncertainty. For VLLE of mixture-2 + water, mixture-2 + MEG + water and mixture-2 + methanol + water systems, the organic phase compositions are satisfactorily predicted whereas modeling results are relatively less satisfactory for the vapor phase compositions partially due to uncertainties in the experimental data.
Compounds
# Formula Name
1 C2H6O2 1,2-ethanediol
2 C9H20 nonane
3 C8H10 ethylbenzene
4 H2O water
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • 2
  • Mole fraction - 1 ; Liquid mixture 1
  • Temperature, K; Liquid mixture 1
  • Pressure, kPa; Liquid mixture 1
  • Liquid mixture 1
  • Liquid mixture 2
  • Chromatography
  • 3
  • POMD
  • 1
  • 2
  • Mole fraction - 2 ; Liquid mixture 2
  • Temperature, K; Liquid mixture 2
  • Pressure, kPa; Liquid mixture 2
  • Liquid mixture 2
  • Liquid mixture 1
  • Chromatography
  • 3
  • POMD
  • 3
  • 1
  • Mole fraction - 1 ; Liquid mixture 1
  • Temperature, K; Liquid mixture 1
  • Pressure, kPa; Liquid mixture 1
  • Liquid mixture 1
  • Liquid mixture 2
  • Chromatography
  • 3
  • POMD
  • 3
  • 1
  • Mole fraction - 3 ; Liquid mixture 2
  • Temperature, K; Liquid mixture 2
  • Pressure, kPa; Liquid mixture 2
  • Liquid mixture 2
  • Liquid mixture 1
  • Chromatography
  • 3
  • POMD
  • 1
  • 2
  • 4
  • Mole fraction - 2 ; Liquid mixture 1
  • Mole fraction - 2 ; Liquid mixture 2
  • Mole fraction - 1 ; Liquid mixture 2
  • Mole fraction - 1; Liquid mixture 1
  • Temperature, K; Liquid mixture 2
  • Pressure, kPa; Liquid mixture 2
  • Liquid mixture 1
  • Liquid mixture 2
  • Chromatography
  • Chromatography
  • Chromatography
  • 3
  • POMD
  • 3
  • 1
  • 4
  • Mole fraction - 3 ; Liquid mixture 1
  • Mole fraction - 3 ; Liquid mixture 2
  • Mole fraction - 1 ; Liquid mixture 2
  • Mole fraction - 1; Liquid mixture 1
  • Temperature, K; Liquid mixture 2
  • Pressure, kPa; Liquid mixture 2
  • Liquid mixture 1
  • Liquid mixture 2
  • Chromatography
  • Chromatography
  • Chromatography
  • 3