Thermodynamics Research Center / ThermoML | Fluid Phase Equilibria

Excess properties and isobaric vapor liquid equilibria for four binary systems of alkyl (methyl to butyl) methanoates with decane

Sabater, G.[Gisela], Ortega, J.[Juan]
Fluid Phase Equilib. 2010, 291, 1, 18-31
ABSTRACT
This work shows the experimental data of excess properties at several temperatures and the vapor.liquid equilibria (VLE) obtained for four binary systems of alkyl methanoates (methyl to butyl) with decane, all measured at constant pressure of 101.32 kPa. The isobaric VLE data were thermodynamically consistent according to the Fredenslund test and did not present an azeotrope. The experimental data of HEm and VEm showed that the mixing process of the systems studied are clearly endothermic with expansion effects, and this was the case for all the mixtures in which ( delHEm / delT)p greater than 0 and ( delVEm / delT)p greater than 0. The mixing properties data indicate high interactional effects that also produce high values of gamma, especially in the system containing methyl methanoate, caused by associative problems that diminish with increased alkanolic chain length of ester. Mixing quantities were correlated with a parametric model with temperature-dependent coefficients. The VLE data and enthalpies were simultaneously correlated with a general model established for excess Gibbs function, yielding an acceptable correlation in all cases. Isobaric VLE quantities were estimated with two known versions of the UNIFAC model, with very similar results. Using the parameters published in the literature for the HCOO/CH2 interaction, the UNIFAC model does not reproduce well the data that characterize VLE for the mixtures studied, although the version of Gmehling et al. [8] using the same set of parameters, makes an acceptable qualitative and quantitative prediction of HEm .
Compounds
# Formula Name
1 C2H4O2 methyl methanoate
2 C10H22 decane
3 C3H6O2 ethyl methanoate
4 C4H8O2 propyl methanoate
5 C5H10O2 butyl methanoate
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • 2
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 50
  • POMD
  • 1
  • 2
  • Mole fraction - 1 ; Gas
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Density calibration data
  • 50
  • POMD
  • 1
  • 2
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Mole fraction - 1; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Calvet calorimetry
  • 18
  • POMD
  • 1
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 34
  • POMD
  • 3
  • 2
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 45
  • POMD
  • 3
  • 2
  • Mole fraction - 3 ; Gas
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Density calibration data
  • 45
  • POMD
  • 3
  • 2
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Calvet calorimetry
  • 31
  • POMD
  • 3
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 3; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 72
  • POMD
  • 4
  • 2
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 4; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 54
  • POMD
  • 4
  • 2
  • Mole fraction - 4 ; Gas
  • Mole fraction - 4; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Density calibration data
  • 54
  • POMD
  • 4
  • 2
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 4; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Calvet calorimetry
  • 33
  • POMD
  • 4
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 4; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 72
  • POMD
  • 2
  • 5
  • Boiling temperature at pressure P, K ; Liquid
  • Mole fraction - 5; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Gas
  • Ebulliometric method (Recirculating still)
  • 55
  • POMD
  • 2
  • 5
  • Mole fraction - 5 ; Gas
  • Mole fraction - 5; Liquid
  • Pressure, kPa; Gas
  • Gas
  • Liquid
  • Density calibration data
  • 55
  • POMD
  • 2
  • 5
  • Excess molar enthalpy (molar enthalpy of mixing), kJ/mol ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 5; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Calvet calorimetry
  • 29
  • POMD
  • 2
  • 5
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 5; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 69