Thermodynamics Research Center / ThermoML | Fluid Phase Equilibria

Volumetric properties under pressure for the binary system ethanol + toluene

Zeberg-Mikkelsen, C. K.[Claus K.], Lugo, L.[Luis], Garcya, J.[Josefa], Fernandez, J.[Josefa]
Fluid Phase Equilib. 2005, 235, 2, 139-151
ABSTRACT
The density of the asymmetrical binary system composed of ethanol and toluene has been measured under pressure using a vibrating tube densimeter. The measurements have been performed for nine different compositions including the pure compounds at eight temperatures in the range 283.15 353.15K and ten isobars up to 45MPa. The uncertainty in the measured densities is estimated to be 0.1 kgm-3. The measured data has been used to study the behavior and influence of temperature, pressure and composition on the isothermal compressibility, the isobaric thermal expansion, and the excess molar volume. At several temperatures the isobaric thermal expansion shows an non-monotonical behavior versus composition, whereas the excess molar volumes reveal a complex sigmoid behavior. These results have been interpreted as changes in the free-volume and as the formation and weakening of the molecular interactions. The VLE behavior of this binary system within the considered temperature range is represented satisfactory by the perturbed-chain statistical association fluid theory (PC-SAFT) equation of state with a single interaction parameter, although no cross association between ethanol and toluene is taken into account. The densities of this binary system (pure compounds and mixtures) are satisfactory predicted by PC-SAFT with an overall AAD of 0.8%, but the behavior of the excess molar volume is not described correctly.
Compounds
# Formula Name
1 C2H6O ethanol
2 C7H8 toluene
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 79
  • POMD
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 80
  • POMD
  • 1
  • 2
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 713