Thermodynamics Research Center / ThermoML | International Journal of Thermophysics

Viscosity Measurements on Ionic Liquids: A Cautionary Tale

Diogo, J. C. F.[Joao C.F.], Caetano, F. J. P.[Fernando J.P.], Fareleira, J. M. N. A.[Joao M.], Wakeham, W. A.[William A.]
Int. J. Thermophys. 2014, 35, 9-10, 1615-1635
ABSTRACT
The vibrating-wire viscometer has proven to be an exceedingly effective means of determining the viscosity of liquids over a wide range of temperature and pressure. The instrument has a long history but a variety of technological and theoretical developments over a number of years have improved its precision and most recently have enabled absolute measurements of high accuracy. However, the nature of the electrical measurements required for the technique has inhibited its widespread use for electrically conducting liquids so that there have been only a limited number of measurements. In the particular context of ionic liquids, which have themselves attracted considerable attention, this is unfortunate because it has meant that one primary measurement technique has seldom been employed for studies of their viscosity. In the last 2 years systematic efforts have been made to explore the applicability of the vibrating-wire technique by examining a number of liquids of increasing electrical conductivity. These extensions have been successful. However, in the process we have had cause to review previous studies of the viscosity and density of the same liquids at moderate temperatures and pressures and significant evidence has been accumulated to cause concern about the application of a range of viscometric techniques to these particular fluids. Because the situation is reminiscent of that encountered for a new set of environmentally friendly refrigerants at the end of the last decade, in this paper the experimental methods employed with these liquids have been reviewed which leads to recommendations for the handling of these materials that may have consequences beyond viscometric measurements. In the process new viscosity and density data for 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide [ C 6 mim][ NTf 2 ], 1-ethyl-3-methylimidazolium ethyl sulfate [ C 2 mim][ EtSO 4 ], and 1-ethyl-3-methylpyridinium ethyl sulfate [ C 2 mpy][ EtSO 4 ] have been obtained.
Compounds
# Formula Name
1 C12H19F6N3O4S2 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide
2 C10H17NO4S 1-ethyl-3-methylpyridinium ethylsulfate
3 C8H16N2O4S 1-ethyl-3-methylimidazolium ethyl sulfate
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 2
  • POMD
  • 2
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 2
  • POMD
  • 3
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 35
  • POMD
  • 3
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating wire viscometry
  • 6
  • POMD
  • 3
  • Viscosity, Pa*s ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Capillary tube (Ostwald; Ubbelohde) method
  • 2