Thermodynamics Research Center / ThermoML | International Journal of Thermophysics

Burnett PVT Measurements of Hydrogen and the Development of a Virial Equation of State at Pressures up to 100 MPa

Sakoda, N., Shindo, K., Motomura, K., Shinzato, K., Kohno, M., Takata, Y., Fujii, M.
Int. J. Thermophys. 2012, 33, 3, 381-395
ABSTRACT
PVT properties weremeasured for hydrogen by the Burnettmethod in the temperature range from 353K to 473K and at pressures up to 100MPa. In the present Burnett method, the pressure measurement was simplified by using an absolute pressure transducer instead of a differential pressure transducer, which is traditionally used. The experimental procedures become easier, but the absolute pressure transducer is set outside the constant temperature bath because of the difficulty of its use in the bath, and the data acquisition procedure is revised by taking into account the effects of the dead space in the absolute pressure transducer. The measurement uncertainties in temperature, pressure, and density are 20mK, 28kPa, and 0.07% to 0.24% (k = 2), respectively. Based on the present data and other experimental data at low temperatures, a virial equation of state (EOS) from 220K to 473K and up to 100MPa was developed for hydrogen with uncertainties in density of 0.15%(k = 2) at P ? 15MPa, 0.20 % at 15 MPa less than P ? 40 MPa, and 0.24 % at P greater than 40 MPa, and this EOS shows physically reasonable behavior of the second and third virial coefficients. Isochoric heat capacities were also calculated from the virial EOS and were compared with the latest EOS of hydrogen. The calculated isochoric heat capacities agree well with the latest EOS within 0.5% above 300K and up to 100MPa, while at lower temperatures, as the pressure increases, the deviations become larger (up to 1.5 %).
Compounds
# Formula Name
1 H2 hydrogen
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Amount density, mol/m3 ; Fluid (supercritical or subcritical phases)
  • Temperature, K; Fluid (supercritical or subcritical phases)
  • Pressure, kPa; Fluid (supercritical or subcritical phases)
  • Fluid (supercritical or subcritical phases)
  • Burnett expansion method
  • 104