Thermodynamics Research Center / ThermoML | International Journal of Thermophysics

Densities and Excess, Apparent, and Partial Molar Volumes of Binary Mixtures of BMIMBF4 + Ethanol as a Function of Temperature, Pressure, and Concentration

Abdulagatov, I. M., Tekin, A., Safarov, J., Hassel, E.
Int. J. Thermophys. 2008, 29, 2, 505-533
ABSTRACT
The density of five BMIMBF4 (1-butyl-3-methylimidazolium tetrafluoroborate) + ethanol binary mixtures with compositions of (0.0701, 0.3147, 0.5384, 0.7452, and 0.9152) mole fraction BMIMBF4 and of pure BMIMBF4 have been measured with a vibrating-tube densimeter. Measurements were performed at temperatures from 298 K to 398 K and at pressures up to 40 MPa. The total uncertainty of density, temperature, pressure, and concentration measurements were estimated to be less than 0.1 kg m-3, 15 mK, 5 kPa, and 10-4, respectively. The uncertainties reported in this paper are expanded uncertainties at the 95% confidence level with a coverage factor of k = 2. The measured densities were used to study derived volumetric properties such as excess, apparent, and partial molar volumes. It is shown that the values of excess molar volume for BMIMBF4 + ethanol mixtures are negative at all measured temperatures and pressures over the whole concentration range. The effect of water content on the measured values of density was discussed. The volumetric (excess, apparent, and partial molar volumes) and structural (direct and total correlation integrals, cluster size) properties of dilute BMIMBF4 + ethanol mixtures were studied in terms of the Krichevskii parameter. The measured densities were used to develop a Tait-type equation of state.
Compounds
# Formula Name
1 C8H15BF4N2 1-butyl-3-methylimidazolium tetrafluoroborate
2 C2H6O ethanol
Datasets
The table above is generated from the ThermoML associated json file (link above). POMD and RXND refer to PureOrMixture and Reaction Datasets. The compound numbers are included in properties, variables, and phases, if specificied; the numbers refer to the table of compounds on the left.
Type Compound-# Property Variable Constraint Phase Method #Points
  • POMD
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 45
  • POMD
  • 2
  • 1
  • Mass density, kg/m3 ; Liquid
  • Temperature, K; Liquid
  • Mole fraction - 1; Liquid
  • Pressure, kPa; Liquid
  • Liquid
  • Vibrating tube method
  • 270