
METADATA AND NUMERICAL DATA CAPTURE: Enthalpy Increments H(T, p) - H(T', p')

Guided Data Capture (GDC)

This tutorial describes METADATA AND NUMERICAL DATA CAPTURE: for **Enthalpy Increments** *H(T,p) – H(T',p')* with the Guided Data Capture (GDC) software.

NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

Compounds, samples, properties, etc., can be added or modified at any time.

However, the hierarchy must be maintained (i.e., a property cannot be entered, if there is no associated sample or compound.)

The experimental data used in this example is from:

J. Chem. Eng. Data 2000, 45, 348-352

Specific Enthalpy Increments for Pentan-1-ol at Temperatures up to 623.2 K and 10.1 MPa

Christopher J. Wormald^{*} and Gareth F. James

School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.

Measurements of specific enthalpy increments for pentan-1-ol are reported. A countercurrent watercooled flow calorimeter was used to measure 102 enthalpy increments over the temperature range 448.2 K to 623.2 K at pressures from 0.1 MPa up to 10.1 MPa. Extrapolation of the gas-phase measurements to zero pressure gave values in excellent agreement with pure component ideal gas enthalpies calculated by extrapolating data on lower alcohols. Values of the specific enthalpy of vaporization derived from the measurements are in agreement with other work and are well fitted by a modification of the Watson equation. A method for the calculation of the two-phase enthalpy-pressure envelope is described.

348

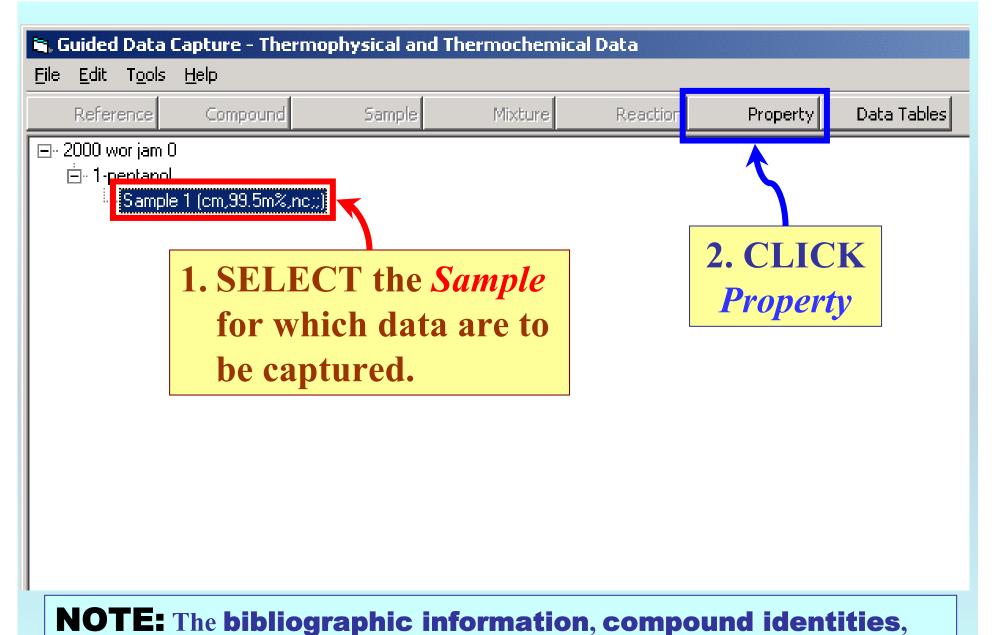

Enthalpy Increments for **Pentan-1-ol** as a function of **T** and **p**

Table 1. Specific Enthalpy Increments $\Delta h/(kJ\cdot kg^{-1})$ for Pentan-1-ol Measured Relative to the Saturation Pressure p_s of the Liquid at the Standard Temperature 298.15 K										
Т	р	Δh	р	Δh	р	Δh	р	Δh	р	Δh
К	MPa	kJ•kg ^{−1}	MPa	$kJ\cdot kg^{-1}$	MPa	kJ•kg ^{−1}	MPa	kJ•kg ^{−1}	MPa	kJ•kg ¹
448.2	0.25	895	0.77	437	4.32	440	6.50	438	9.32	430
473.2	0.20	947	0.46	927	1.13	517	4.36	518	6.63	51
	0.35	937	0.64	527	2.94	519	5.61	517		
498.2	0.17	1005	0.47	995	0.74	970	2.10	600	7.15	674
	0.34	1000	0.57	991	1.20	600	2.78	598	10.1	95
523.2	0.15	1072	0.74	1044	1.35	1013	4.07	696	8.18	691
	0.49	1057	1.10	1022	2.33	703	5.38	690	10.1	685
548.2	0.12	1137	0.77	1123	1.88	1070	3.46	798	5.38	786
	0.52	1117	1.29	1103	2.52	800	4.03	790	8.38	785
573.2	0.11	1185	2.72	1112	3.96	905	5.67	885	7.62	872
	0.77	1175	3.50	918	5.12	889	5.98	883	8.31	871
	1.32	1162	3.75	910	5.23	888	6.63	881	9.50	870
586.2	0.11	1221	3.18	1127	4.50	942	5.67	937	8.31	924
	0.78	1210	3.50	1111	5.12	941	5.98	935	9.52	925
	1.33	1197	3.85	970	5.23	940	6.63	937		
	2.72	1152	3.96	957	5.48	938	7.63	974		
598.2	0.15	1259	4.13	1106	4.71	1015	5.96	9 <mark>3</mark> 7	10.1	966
	1.09	1232	4.32	1079	5.25	995	6.50	81		
	2.59	1200	4.51	1048	5.48	992	8.00	368		
	3.84	1135	4.66	1026	5.62	989	9.26	968		
623.2	0.40	1307	2.56	1274	5.35	1116	8.96	075		
	1.33	1293	4.00	1222	6.63	1086	10.0	1070		
Τ	his da	ata set i	is			NOT	E: Fo	T = 2	298.15	K ,
C	onsid	ered he	re.				p_{sat} =	= 0.2 kI	Pa	

Experimental Method and Uncertainty Information:

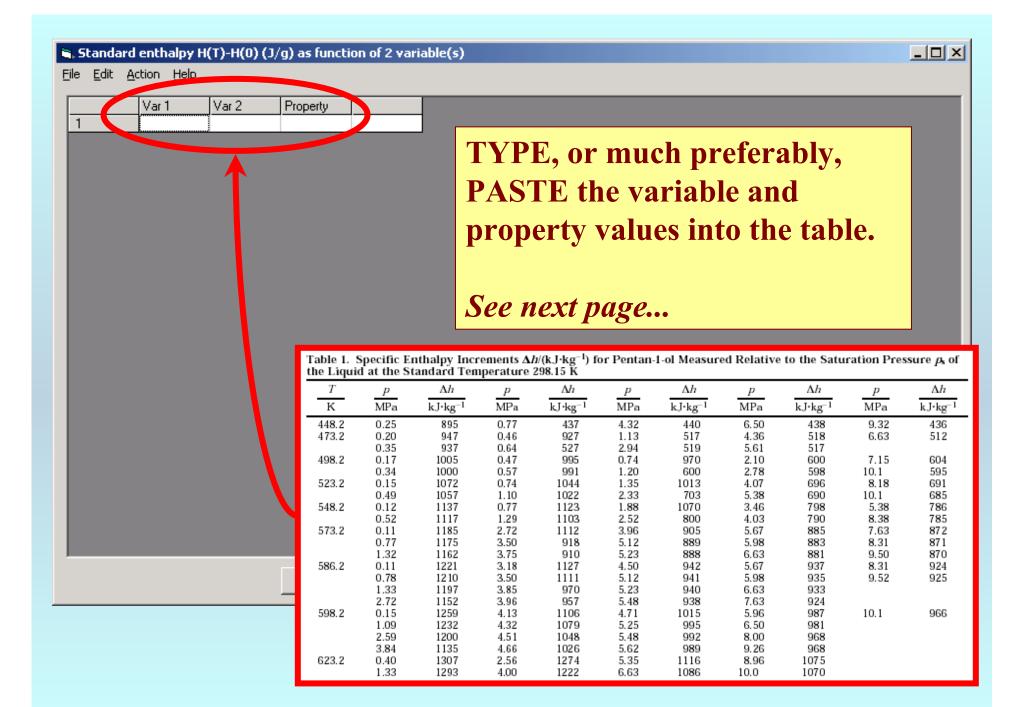
Enthalpy increments were measured with the countercurrent heat-exchange calorimetric apparatus described previously (Wormald and Yerlett, 1985).

Systematic errors on the measurements are estimated to be no greater than $\pm 1 \text{ kJ} \cdot \text{kg}^{-1}$. Random errors arose mainly from fluctuations in the operation of the metering pump supplying the alcohol and were estimated to <u>be $\pm 3 \text{ kJ} \cdot \text{kg}^{-1}$ </u>.

sample descriptions, and **mixture** were entered previously. (There are separate tutorials, which describe capture of this information, if needed.)

Property and experimental method for 1-pentanol	
Help	
Property group: Heat capacity and derived properties	
Property: Standard enthalpy H(T)-H(0)	
Units: J/g	1. SELECT the Property Group : <i>Heat capacity and</i>
Method of measurement: Experimental purpose:	<i>derived properties</i> from the menu.
2. SELECT the Property: A NOTE: <u>This property name is mist</u>	Standard enthalpy H(T)-H(0). leading.
Initial and final temperatures, pre- on subsequent forms. The capture specifications.	ssures, and phases will be specified d data are fully defined by these
Comment (optional) 3. SELECT the Units from the menu: J/g , here.	a Cancel

Help Property gro Property:	1. SELECT Method of Measurement from the list	
Units:	J/g	•
Method of m	easurement: Flow calorimetry	
Experimental	purpose: Principal objective of the work	•
2. SEI	LECT the Experimental 3. CLICK 2-Variable	
Purp	ose from the list provided. <i>Data</i> for the example	
Comment (optional)	Method described in: Wormald and Yerlett, J. Chem. Thermodyn, 1985, 17, 1171-1186.	
	1-Variable data 2-Variable data	
	One data point Cancel	

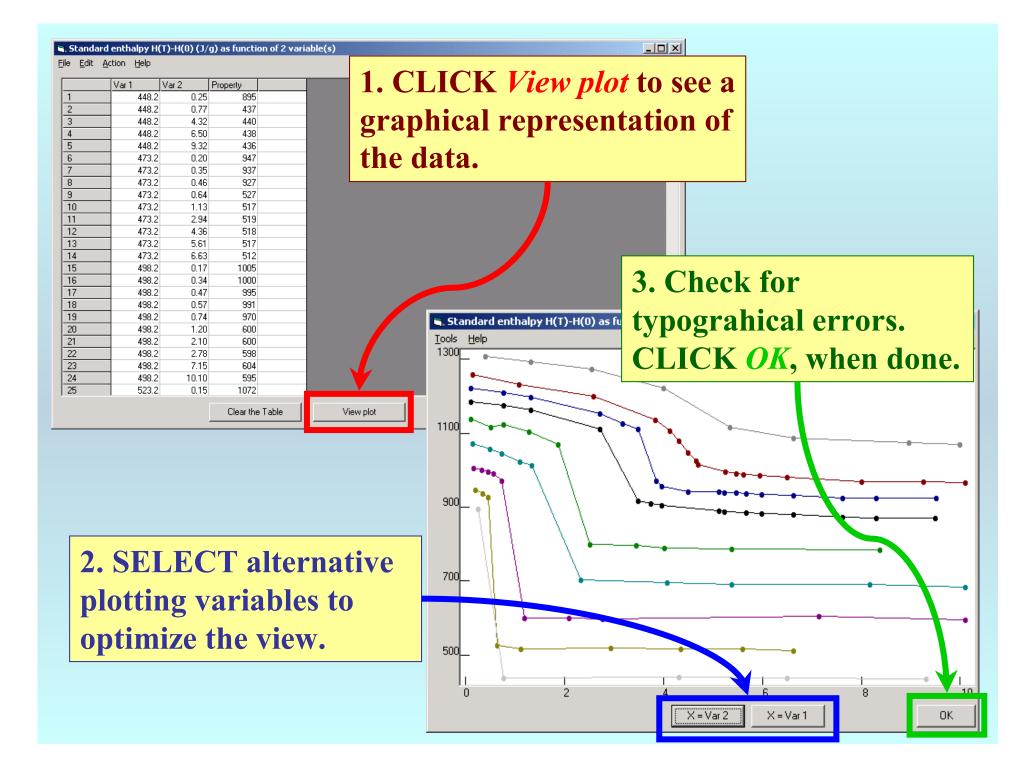

1. SELECT the **Independent variable(s)** with **Units**; *Temperature* (*K*) and *Pressure* (*MegaPa*), here. Include **Uncertainties**, if known.

Substance: 1-pentanol	▼ Sample # 1 ▼
- Independent variable 1 Temperature Units: K	Uncert⊙KO ≋
-Independent variable 2 Pressure	_ Uncert _ O %
 Definition of Measurement Results (Absolute vs Relative Direct value Direct value Direct value Rel. to ref. phase at fixed T and P Rel. to ref. phase at fixed T and fixed P Rel. to ref. phase at same T and fixed P Rel. to ref. phase at same T and P Rel. to ref. phase in equil. with Phase 1 The reference state described in a comment 	
Difference between Upper and Lower T Phase 1: Precision of the Property Value(s)	2. SELECT the Definition of Measurement Results (Absolute vs Relative) from the menu. Here, SELECT Pal. to pafe phase at fixed T and P
	SELECT Rel. to ref. phase at fixed T and P. nd Yerlett, J. Chem. Thermodyn, 1985, 17, 1171-1186. Property and method Numerical Data Cancel

NOTE: Additional fields appear

1 💌
0 %
0 %
•
ents)

method, Expe	e Data pres rimental values		× ▼ Sample # 1 ▼
Temperature Independent variable 2			• κ • ο ž , the phase associated ables : <i>Liquid</i> , here.
Definition of Measurement Re Rel. to ref. phase at fixed 1 a Reference T: 298,15 K Ref	nd P 🗾	Relation: Difference X-X a Reference phase: Liqui	
Data presentation Experimental values Property set # 1	• Cons	traint: Single phase	3. ENTER the Precision of the PropertyValue(s),
Phase 1: Liquid	e(s)		if known.
Comment to this record: Use 4. CLICK	Numerical Dat	and method	dyn, 1985, 17, 1171-1186. Numerical Data Cancel

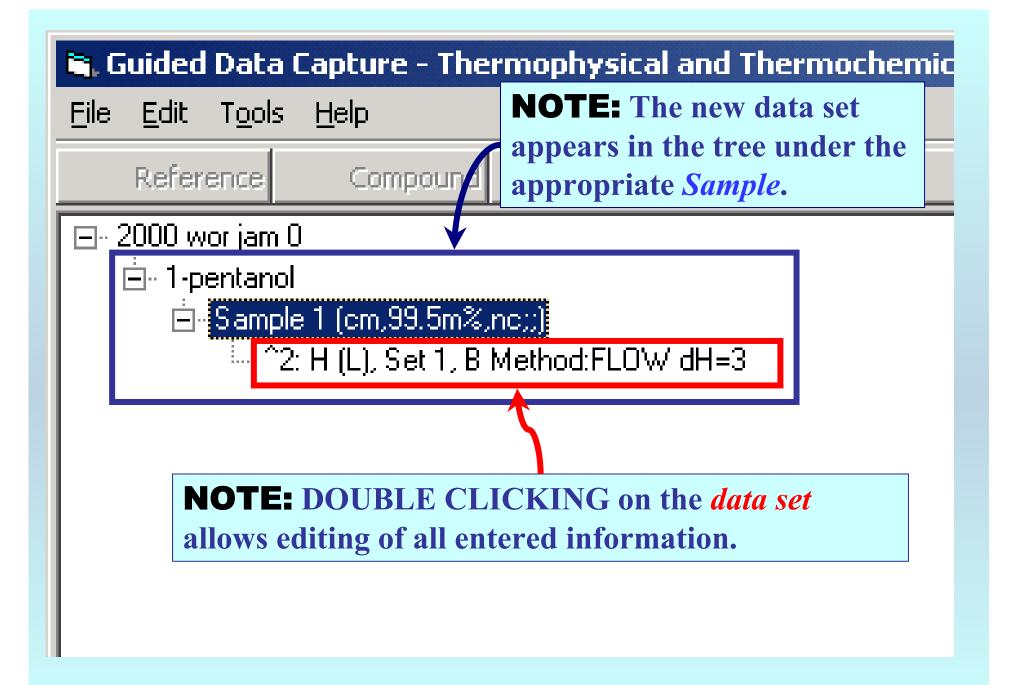

Standard enthalpy H(T)-H(0) (J/g) as function of 2 variable(s)

File Edit Action Help

			D .											
	Var 1	Var 2	Property		-									
1	448.2	0.25	895											
2	448.2	0.77	437											
3	448.2	4.32	440											
4	448.2	6.50	438											
5	448.2	9.32	436											
6	473.2	0.20	947											
7	473.2	0.35	937											
8	473.2	0.46	927											
9	473.2	0.64	527											
10	473.2	1.13	517											
11	473.2	2.94	519	T-blad a	l Sanalfia E	a tha las I a		uuu tu b e	. De atem	1 -1 1 4	d Deletion	An Alex Cade		
12	473.2	4.36	518	the Liquid	d at the S	tandard Ten	rements A. nperature	h/(kJ·kg ^{−1}) fc 298.15 K	or Pentan-	1-of measur	ed Relative	to the Satu	ration Pres	sure p_s or
13	473.2	5.61	517	T	р	Δh	р	Δh	р	Δh	р	Δh	р	Δh
14	473.2	6.63	512	К	MPa	kJ·kg ⁻¹	MPa	$kJ\cdot kg^{-1}$	MPa	kJ•kg ^{−1}	MPa	kJ•kg ^{−1}	MPa	$kJ\cdot kg^{-1}$
15	498.2	0.17	1005	448.2 473.2	0.25 0.20	895 947	0.77 0.46	437 927	4.32 1.13	440 517	6.50 4.36	438 518	9.32 6.63	436 512
16	498.2	0.34	1000		0.35	937	0.64	527	2.94	519	5.61	517		
17	498.2	0.47	995	498.2	0.17 0.34	1005 1000	0.47 0.57	995 991	0.74 1.20	970 600	2.10 2.78	600 598	7.15 10.1	604 595
18	498.2	0.57	991	523.2	0.15	1072	0.74	1044	1.35	1013	4.07	696	8.18	691
19	498.2	0.74	970	548.2	0.49 0.12	1057 1137	1.10 0.77	1022 1123	2.33 1.88	703 1070	5.38 3.46	690 798	10.1 5.38	685 786
20	498.2	1.20	600	573.2	0.52 0.11	1117 1185	1.29 2.72	1103 1112	2.52 3.96	800 905	4.03 5.67	790 885	8.38 7.63	785 872
21	498.2	2.10	600	515.2	0.77	1175	3.50	918	5.12	889	5.98	883	8.31	871
22	498.2	2.78	598	586.2	1.32 0.11	1162 1221	3.75 3.18	910 1127	5.23 4.50	888 942	6.63 5.67	881 937	9.50 8.31	870 924
23	498.2	7.15	604		0.78 1.33	1210 1197	3.50 3.85	1111 970	5.12 5.23	941 940	5.98 6.63	935 933	9.52	925
24	498.2	10.10	595		2.72	1152	3.96	957	5.48	938	7.63	924		
25	523.2	0.15	1072	598.2	0.15 1.09	1259 1232	4.13 4.32	1106 1079	4.71 5.25	1015 995	5.96 6.50	987 981	10.1	966
,					2.59	1200	4.51	1048	5.48	992	8.00	968		
			Clear the	623.2	$3.84 \\ 0.40$	1135 1307	4.66 2.56	1026 1274	5.62 5.35	989 1116	9.26 8.96	968 1075		
					1.33	1293	4.00	1222	6.63	1086	10.0	1070		

_ 🗆 ×

NOTE: Simple CUT/PASTE procedures can be used within the table to convert the original table into the required number of columns. (This can also be done externally in spreadsheet software, e.g., EXCEL.)



Standard enthalpy H(T)-H(0) (J/g) as function of 2 variable(s)

<u>File Edit Action H</u>elp

Var 1	Var 2	Property	
448.2	0.25	895	
448.2	0.77	437	
448.2	4.32	440	
448.2		438	
448.2		436	
473.2		947	
473.2		937	
473.2		927	
473.2		527	
473.2		517	
473.2		519	
473.2		518	
473.2		517	
473.2			
498.2		1005	
498.2		1000	
498.2		995	
 498.2		991	CLICK Accept
498.2		970	CLICKACCEPT
498.2		600	
498.2		600	
 498.2		598	
498.2		604	
498.2		595	
523.2	0.15	1072	
		Clear the Table	View plot Cance

- D ×

Continue with other compounds, samples, properties, reactions, etc...

or save your file and exit the program.