
METADATA AND NUMERICAL DATA CAPTURE: Derived Thermodynamic Functions From adiabatic calorimetry (for 1 – Component)

This tutorial describes METADATA AND NUMERICAL DATA CAPTURE: for **Derived Thermodynamic Functions** with the Guided Data Capture (GDC) software.

NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

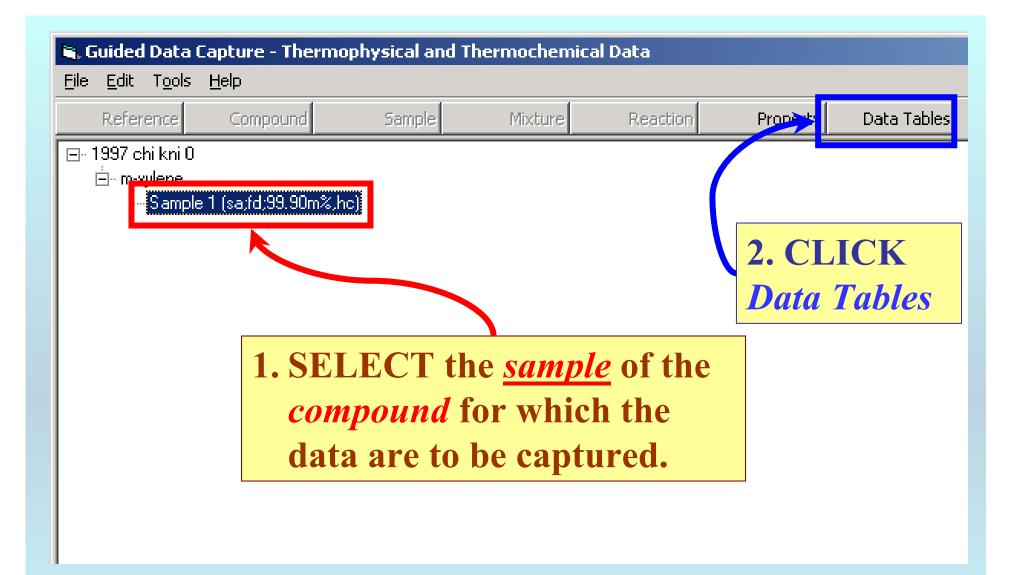
Compounds, samples, properties, etc., can be added or modified at any time.

However, the hierarchy must be maintained (i.e., a property cannot be entered, if there is no associated sample or compound.)

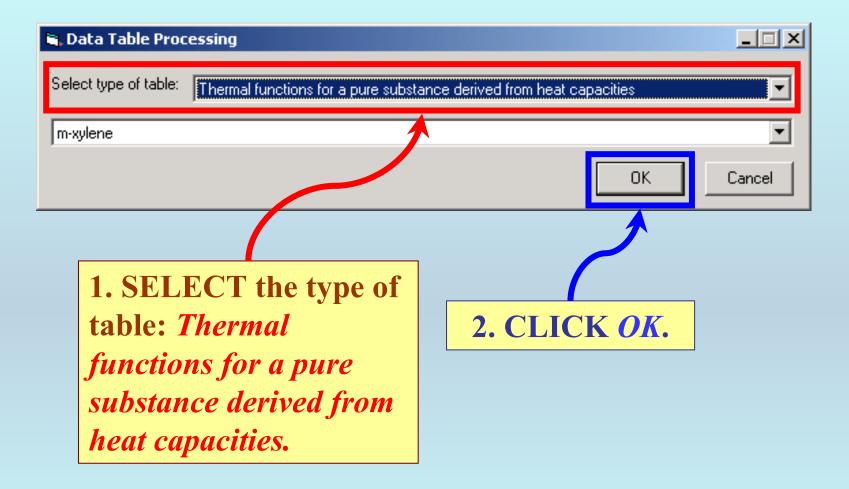
The experimental data used in this example is from:

J. Chem. Eng. Data 1997, 42, 475-487

Thermodynamic Equilibria in Xylene Isomerization. 2. The Thermodynamic Properties of *m*-Xylene[†]


R. D. Chirico,* S. E. Knipmeyer, A. Nguyen, J. W. Reynolds, and W. V. Steele

Bartlesville Thermodynamics Group, BDM Petroleum Technologies, P.O. Box 2543, Bartlesville, Oklahoma 74005


Measurements leading to the calculation of the ideal-gas thermodynamic properties for *m*-xylene are reported. Experimental methods included adiabatic heat-capacity calorimetry (5 K to 430 K), vibrating-tube densitometry (323 K to 523 K), comparative ebulicometry (309 K to 453 K), and differential-scanning calorimetry (DSC). The critical temperature was measured by DSC. Saturation heat capacities for the liquid phase between 430 K and 550 K and the critical pressure were derived with the vapor-pressure and DSC results. Results were combined with an enthalpy of combustion reported in the literature to derive standard molar entropies, enthalpies, and Gibbs free energies of formation at selected temperatures between 250 K and 550 K. The standard state is defined as the ideal gas at the pressure $p = p^\circ = 101.325$ kPa. Standard entropies are compared with those calculated statistically on the basis of assigned vibrational spectra for the vapor phase. All results are compared with literature values.

Derived Thermodynamic Functions: $C_{sat,m}(T), \{H(T)-H(0)\}, S(T)-S(0)$ **m-xylene**

Vapo	• 9. Mola r-Satura ∙mol ^{−1})						4 51		
<i>17</i> K	$C_{\text{sat,m}}/R$	$\frac{\Delta_0^T S_m}{R}$	$\frac{\Delta_0^T \mathbf{H}_m}{RT}$	T/K	$C_{\text{sat,m}}$	$\frac{\Delta_0^T S_m}{R}$	$\frac{\Delta_0^T H_m}{RT}$		
5.0 10.0 15.0 20.0 30.0 40.0 50.0 60.0 70.0	0 0.265 0 0.844 0 1.651 0 3.431 0 4.937 0 6.002 0 6.749 0 7.322	0.009 0.082 0.287 0.637 1.645 2.849 4.073 5.237 6.322 7.333	Cry 0.007 0.217 0.472 1.163 1.928 2.643 3.268 3.808 4.279	stals 90.00 120.00 140.00 160.00 180.00 200.00 220.00 225.30	8.292 8.745 9.654 10.577 11.535 12.521 13.527 14.582 14.880	8.281 9.178 10.853 12.410 13.885 15.300 16.671 18.009 18.359	$4.699 \\ 5.081 \\ 5.767 \\ 6.388 \\ 6.971 \\ 7.533 \\ 8.082 \\ 8.624 \\ 8.768 \end{cases}$	S	Data sets considered here. <i>NOTE:</i> Each phase will be considered separately
340.0 360.0	0 19.772 0 20.410 0 21.133 5 21.848 0 21.923 0 22.765	24.575 25.812 27.419 28.958 30.307 30.442 31.884 33.290 34.667 36.020		uid 400.00 420.00	26.444 27.419	37.351 38.665	18.308 18.719	Exp	erimental Method Info : Adiabatic Calorimetry

NOTE: The **bibliographic information**, **compound identities**, **sample descriptions**, and **mixture** were entered previously. (There are separate tutorials, which describe capture of this information, if needed.)

Transform the multi-column data into single columns.

NOTE: This can be done in any spreadsheet software (e.g., EXCEL)

Table 9. Molar Thermodynamic Functions at Vapor-Saturation Pressure for m-Xylene^a (R = 8.31451 J·K⁻¹·mol⁻¹)

<i>T</i> /K	$C_{\text{sat,m}}/R$	$\frac{\Delta_0^T S_m}{R}$	$\frac{\Delta_0^T H_m}{RT}$	<i>T</i> /K	$C_{\rm sat,m}/R$	$\frac{\Delta_0^T S_m}{R}$	$\frac{\Delta_0^T H_m}{RT}$
			Cry	stals			
5.00	0.028	0.009	0.007	90.00	8.292	8.281	4.699
10.00	0.265	0.082	0.062	100.00	8.745	9.178	5.081
15.00	0.844	0.287	0.217	120.00	9.654	10.853	5.767
20.00	1.651	0.637	0.472	140.00	10.577	12.410	6.388
30.00	3.431	1.645	1.163	160.00	11.535	13.885	6.971
40.00	4.937	2.849	1.928	180.00	12.521	15.300	7.533
50.00	6.002	4.073	2.643	200.00	13.527	16.671	8.082
60.00	6.749	5.237	3.268	220.00	14.582	18.009	8.624
70.00	7.322	6.322	3.808	225.30	14.880	18.359	8.768
80.00	7.821	7.333	4.279				
			Lic	quid			
225.30	19.362	24.575	14.984	400.00	26.444	37.351	18.308
240.00	19.772	25.812	15.264	420.00	27.419	38.665	18.719
260.00	20.410	27.419	15.635	440.00^{b}	28.41	39.96	19.14
280.00	21.133	28.958	16.001	460.00 ^b	29.44	41.25	19.56
298.15	21.848	30.307	16.335	480.00 ^b	30.51	42.52	20.00
300.00	21.923	30.442	16.369	500.00 ^b	31.65	43.79	20.44
320.00	22.765	31.884	16.743	520.00 ^b	32.89	45.06	20.89
340.00	23.642	33.290	17.122	540.00 ^b	34.30	46.33	21.36
360.00	24.554	34.667	17.510	550.00 ^b	35.10	46.96	21.61
380.00	25.490	36.020	17.905				

	T/K	Csat/R	S/R	(H-H0)/RT				
		cry	stals					
	5.00	0.028	0.009	0.007				
	10.00	0.265	0.082	0.062				
	15.00	0.844	0.287	0.217				
	20.00	1.651	0.637	0.472				
	30.00	3.431	1.645	1.163				
	40.00	4.937	2.849	1.928				
	50.00	6.002	4.073	2.643				
	60.00	6.749	5.237	3.268				
	70.00	7.322	6.322	3.808				
	80.00	7.821	7.333	4.279				
	90.00	8.292	8.281	4.699				
	100.00	8.745	9.178	5.081				
	120.00	9.654	10.853	5.767				
	140.00	10.577	12.410	6.388				
	160.00	11.535	13.885	6.971				
	180.00	12.521	15.300	7.533				
	200.00	13.527	16.671	8.082				
	220.00	14.582	18.009	8.624				
	225.30	14.880	18.359	8.768				
	liquid							
	225.30	19.362	24.575	14.984				
	240.00	19.772	25.812	15.264				
	260.00	20.410	27.419	15.635				
	280.00	21.133	28.958	16.001				
	298.15	21.848	30.307	16.335				
	300.00	21.923	30.442	16.369				
	320.00	22.765	31.884	16.743				
	340.00	23.642	33.290	17.122				
	360.00	24.554	34.667	17.510				
	380.00	25.490	36.020	17.905				
	400.00	26.444	37.351	18.308				
	420.00	27.419	38.665	18.719				

roperty							
Inits							
	5.00	0.028	0.009	0.007			
!	10.00	0.265	0.082	0.062			
	15.00	0.844	0.287	0.217			
	20.00	1.651	0.637	0.472			
	30.00	3.431	1.645	1.163			I-H0)/R1
i	40.00	4.937	2.849	1.928		crystals 5.00 0.028 0.009	0.00
	50.00	6.002	4.073	2.643		10.00 0.265 0.009	0.00
	60.00	6.749	5.237	3.268		15.00 0.844 0.287	0.21
	70.00	7.322	6.322	3.808		20.00 1.651 0.637	0.47
0	80.00	7.821	7.333	4.279		30.00 3.431 1.645	1.16
1	90.00	8.292	8.281			40.00 4.937 2.849 50.00 6.002 4.073	1.92
2	100.00	8.745	9.178			60.00 6.749 5.237	3.26
3	120.00	9.654	10.853	5.		70.00 7.322 6.322	3.80
4	140.00	10.577	12.410	6.388		80.00 7.821 7.333	4.27
5	160.00	11.535	13.885	6.971		90.00 8.292 8.281 100.00 8.745 9.178	4.69
6	180.00	12.521	15.300	7.533		120.00 9.654 10.853	5.76
7	200.00	13.527	16.671	8.082		140.00 10.577 12.410	6.38
8	220.00	14.582	18.009	8.624		160.00 11.535 13.885	6.97
9	225.30	14.880	18.359	8.768		180.00 12.521 15.300	7.53
0						200.00 13.527 16.671 220.00 14.582 18.009	8.08
						225.30 14.880 18.359	8.76
						225.30 19.362 24.575	14.98
					Þ	240.00 19.772 25.812 260.00 20.410 27.419	15.26
	1					280.00 20.410 27.419	15.63
C	lear the Table		Process		Cancel	298.15 21.848 30.307	16.33
						<u>300.00 21.923 30.442</u>	16.36 16.74

400.00

420.00

26.444

27.419

37.35

38.665

18.308

18.719

PASTE the data for the first **phase** (*crystals*, here) into the table.

DOUBLE CLICK in each box above the columns to select the Property and **Units** for each column from the menus, which appear after double clicking.

Thermal functions for a pure substance derived from heat capacities

- 🗆 🗵

<u>File E</u>dit <u>H</u>elp

Propeny					
Units					
1	5.00	0.028	0.009	0.007	
2	10.00	0.265	0.082	0.062	
3	15.00	0.844	0.287	0.217	
4	20.00	1.651	0.637	0.472	
5	30.00	3.431	1.645	1.163	
6	40.00	4.937	2.849	1.928	
7	50.00	6.002	4.073	2.643	
8	60.00	6.749	5.237	3.268	
9	70.00	7.322	6.322	3.808	
10	80.00	7.821	7.333	4.279	
11	90.00	8.292	8.281	4.699	
12	100.00	8.745	9.178	5.081	
13	120.00	9.654	10.853	5.767	
14	140.00	10.577	12.410	6.388	
15	160.00	11.535	13.885	6.971	
16	180.00	12.521	15.300	7.533	
17	200.00	13.527	16.671	8.082	
18	220.00	14.582	18.009	8.624	
19	225.30	14.880	18.359	8.768	
20					
	•				
•					Þ
	Clear the Table		Pro	cess	Cancel

CLICK here to fill the screen with the table.

X

🖷 Thermal functions for a pure substance derived from heat capacities

File Edit Help

Property				
Units				
1	5.00	0.028	0.009	
2	10.00	0.265	0.082	
3	15.00	0.844	0.287	
4	20.00	1.651	0.637	
5	30.00	3.431	1.645	
6	40.00	4.937	2.849	
7	50.00	6.002	4.073	
8	60.00	6.749	5.237	
9	70.00	7.322	6.322	
10	80.00	7.821	7.333	
11	90.00	8.292	8.281	
12	100.00	8.745	9.178	
13	120.00	9.654	10.853	
14	140.00	10.577	12.410	
15	160.00	11.535	13.885	
16	180.00	12.521	15.300	
17	200.00	13.527	16.671	
18	220.00	14.582	18.009	
19	225.30	14.880	18.359	
20				
•				<u> </u>
	Clear the Table	Proce	Cancel	

Some menu items are wide. Column widths can be adjusted by moving the dividers. This will allow the full text to be seen.

^o roperty			
Jnits	Nothing		
1		0.028	0.009
2	Heat capacity at constant pressur	0.265	0.082
3	Heat capacity at constant volume	0.844	0.287
4	Heat capacity at vapor saturation	1.651	0.637
5	Standard enthalpy H(T)-H(0) Enthalpy function {H(T)-H(0)}/T	3.431	1.645
6	Standard entropy S(T)-S(0)	4.937	2.849
7	50.00	6.002	4.073
8	60.00	6.749	5.237
9	70.00	7.322	6.322
10	80.00	7.821	7.333
11	90.00	8.292	8.281
12	100.00	8.745	9.178
13	120.00	9.654	10.853
14	140.00	10.577	12.410
15	160.00	11.535	13.885
16	180.00	12.521	15.300
17	200.00	13.527	16.671
18	220.00	14.582	18.009
19	225.30	14.880	18.359
20			

Non-standard units can be used by selecting *ALL OTHER UNITS* from the menu and entering an appropriate conversion factor to the indicated unit.

Thermal functions for a pure substance derived from heat capacities

File Edit Help

Property	Temperature	Heat capacity at vapor saturation p	ressure Csat			
Units	К	ALL OTHER UNITS	_			
1	5.00	P	0.028	0.009		0.00
2	10.00		0.265	0.082		0.06
3	15.00		0.844	0.287		0.21
4	20.00		1.651	0.637		0.473
5	30.00		3.431	1.645		1.16
6	40.00		4.937	2.849		1.92
7	50.00		6.002	4.073		2.64
8	60.00		Non-standard conve	rsion factor	×	3.26
9	70.00					3.80
10	80.00		Property value in the original units multiplied by a OK OK		4.27	
11	90.00				4.69	
12	100.00				Cancel	5.08
13	120.00		 (Original Value) * (Con 	version Factor) = (Converted		5.76
14	140.00		Value) in J/K/mol			6.38
15	160.00		Enter the Conversion I	Factor here		6.97
16	180.00					7.53
17	200.00		8.31451			8.08
18	220.00					8.62
19	225.30		14.880	18.359		8.76
20						

In the example, $C_{sat,m}/R$ values are converted to J/K/mol with the conversion factor 8.31451 given by the authors.

, Thermal functions for a pure substance derived from heat capacities

•

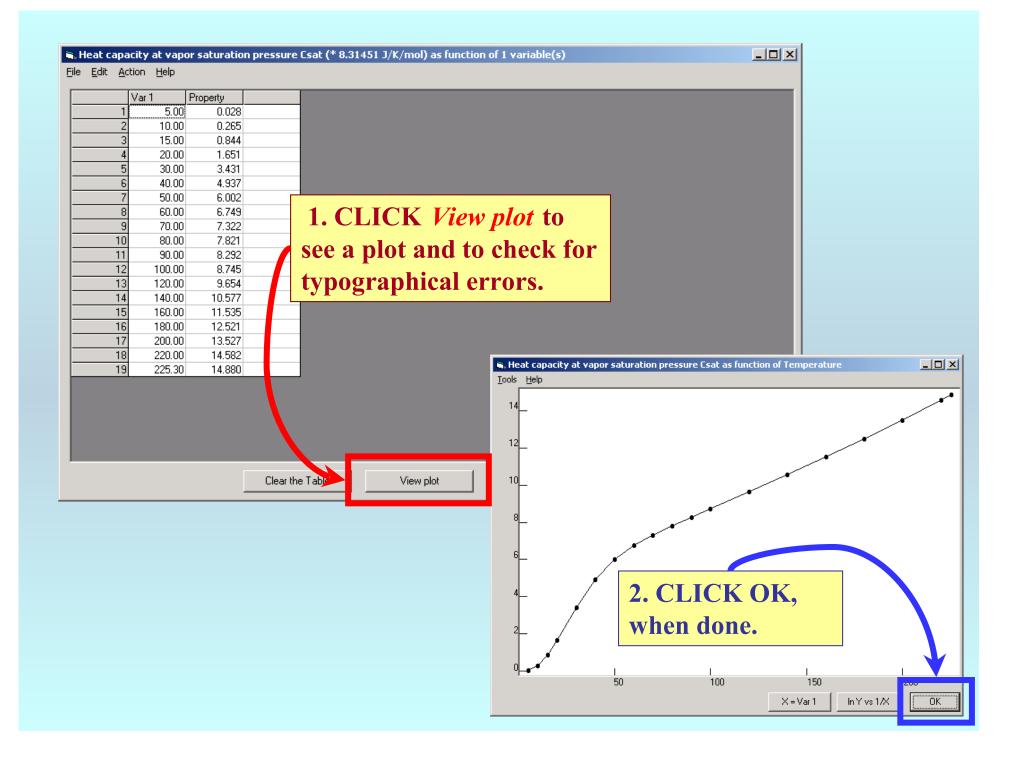
<u>File E</u> dit	Help				-	
Property	Temperature		Entropy	Enthalpy function {H(T)-H(0)}/T		
Units	K	ALL OTHER UNITS	ALL OTHER UNITS	ALL OTHER UNITS		
1	5.00	0.028	0.009	0.007		
2	10.00	0.265	0.082	0.062		
3	15.00	0.844	0.287	0.217		
4	20.00	1.651	0.637	0.472		
5	30.00	3.431	1.645	1.163		
6	40.00	4.937	2.849	1.928		
7	50.00	6.002	4.073	2.643		
8	60.00	6.749	5.237	3.268		
9	70.00	7.322	6.322	3.808		
10	80.00	7.821	7.333	4.279		
11	90.00	8.292	8.281	4.699		
12	100.00	8.745	9.178	5.081		
13	120.00	9.654	10.853	5.767		
14	140.00	10.577	12.410	6.388		
15	160.00	11.535	13.885	6.971		
16	180.00	12.521	15.300	7.533		
17	200.00	13.527		8.082		
18	220.00	14.582	18.009	8.624		
19	225.30	14.880	18.359			
20						

Clear the Table

The completed table looks like this.

CLICK P	rocess.
---------	---------

Process


_ 8 ×

Þ

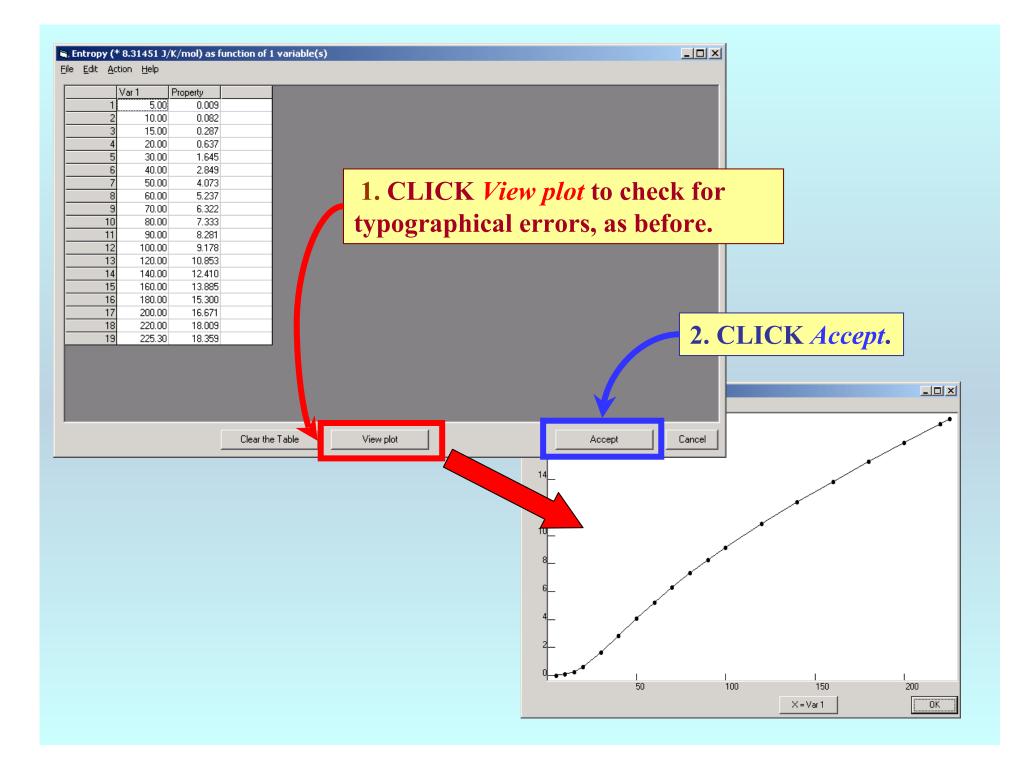
Cancel

Property and experimental method for 1,3-dimethylbenzene	
1. SELECT Method of Measurement from	om the list
Property provided. NOTE: Other can be a valid select	ion and
should include a brief description in the Comn	<i>nent</i> field.
You are entering the data: In original units (as in the source) In system units (converted)	
Method of measurement: Vacuum adiabatic calorimetry]
Experimental purpose: Principal objective of the work	
2. SELECT the Experimental	
Purpose from the list provided.	
Comment (optional)	
ОК	Cancel

Edit: Heat capacity at vapor saturation pressu	ire Csat (* 8.31451 J/K/mol) as function of 1 variable(s) 💶 🗙				
Substance: 1,3-dimethylbenzene	Sample # 1 💌				
Independent variable: Temperature Temperature	Uncert K C %				
Definition of Measurement Results (Absolute vs Relative) Direct value	1. Select the PHASE . (<i>Crystal</i> , here). <i>NOTE:</i> Many fields in this form are filled automatically, based on the information entered in the table.				
Data presentation	2. ENTER the Precision , if known.				
Smoothed values	2. ENTER the Precision , it known.				
Property set # 1 Co	nstraint: Phase boundary				
Phase 1: Crystal	Phase 2: Gas				
- Precision of the Property Value(s) 0.1	© * 8.31451 J/K/mol				
Comment to this record:					
	Property and method Numerical Data Cancel				
3. CLICK Numerical	Data				

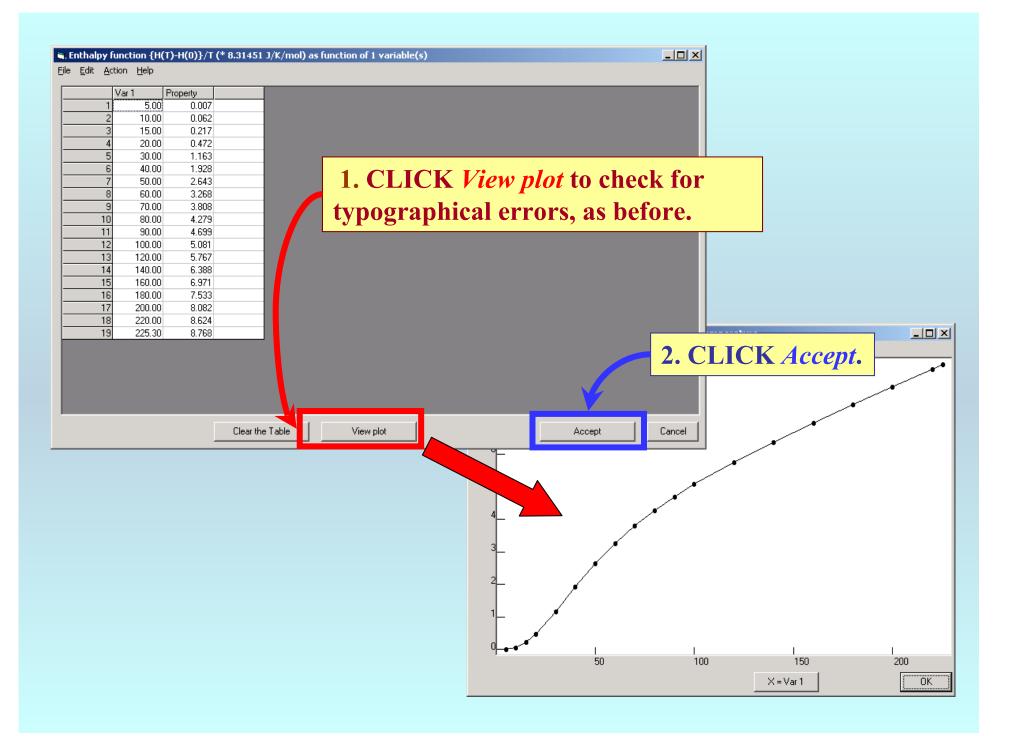
🛎 Heat capacity at vapor saturation pressure Csat (* 8.31451 J/K/mol) as function of 1 variable(s)

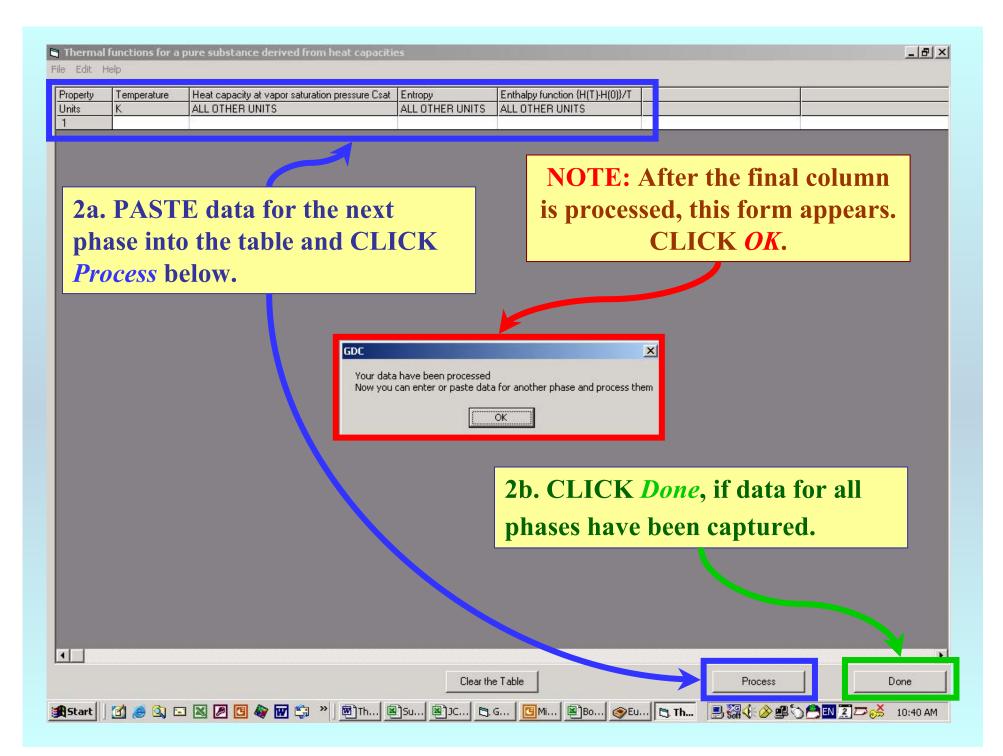
File Edit Action Help


	Var 1	Property	
1	5.00	0.028	
2	10.00	0.265	
3	15.00	0.844	
4	20.00	1.651	
5	30.00	3.431	
6	40.00	4.937	
7	50.00	6.002	
8	60.00	6.749	
9	70.00	7.322	
10	80.00	7.821	
11	90.00	8.292	
12	100.00	8.745	
13	120.00	9.654	
14	140.00	10.577	
15	160.00	11.535	
16	180.00	12.521	
17	200.00	13.527	
18	220.00	14.582	
19	225.30	14.880	

Clear the Table	Accept	Cancel
CLICK Accept		

- D ×


1. The form for the next column (*entropy*, here) will appear.

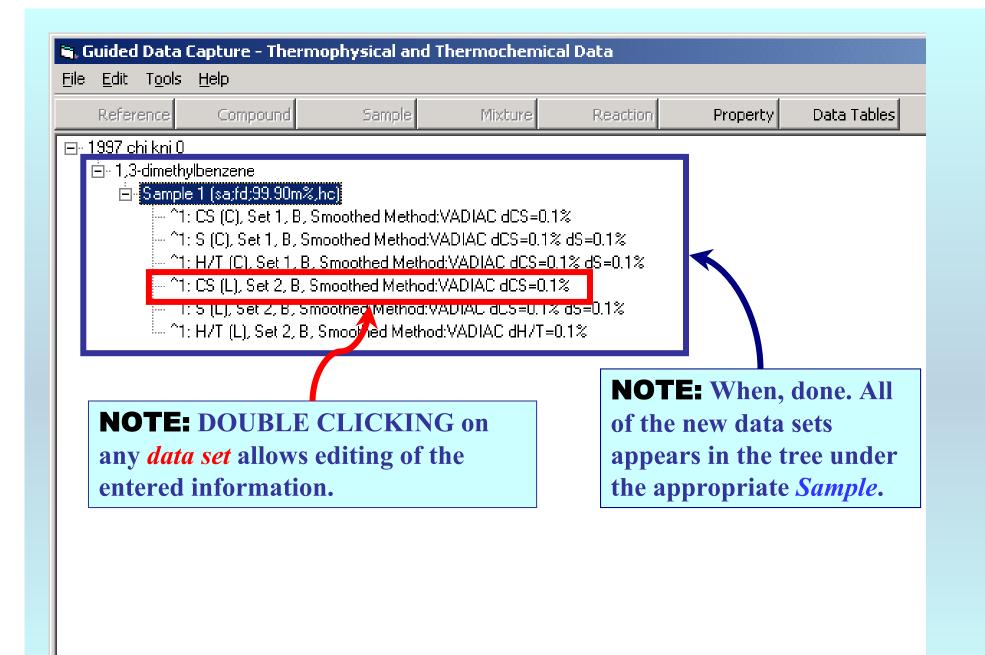

🖷 Edit: Entropy (* 8.31451 J/K/mol) as function of 1 variable(s)
Substance: 1,3-dimethylbenzene
Independent variable: Temperature Temperature ▼ Units: K ▼ Uncert ● K ● %
Temperature Units: K Uncert K 2
2. The PHASE is
- Definition of Measurement Results (Absolute us Relative)
Direct value
Data presentation 3. ENTER the Precision, if known. Smoothed values Image: Comparison of the precision of the preci
Phase 1: Crystal
Precision of the Property Value(s)
Comment to this record:
Property and method Numerical Data Cancel
4. CLICK
Numerical Data

1. The form for the *final* column (*enthalpy function*, here) will appear.

Edit: Enthalpy function {H(T)-H(0)}/T (* 8.31451 J/K/mol) as function of 1 variable(s)
Substance: 1,3-dimethylbenzene
Independent variable: Temperature Temperature ↓ Units: K ↓ Uncert ● K ● 2
Temperature Units: K Uncert OK
2. The PHASE is
Definition of Measurement Results (Absolute vs Relative)
Direct value
Data presentation 3 FNTER the Procision if known
Data presentation 3. ENTER the Precision, if known. Smoothed values Image: Content of the precision of the precisio
Property set # 1 Constraint: Single phase at fixed pressure
Phase 1: Crystal
Precision of the Property Value(s)
© * 8.31451 J/K/mol © %
Comment to this record:
Property and method Numerical Data Cancel
4. CLICK
Numerical Data

Thermal functions for a pure substance derived from heat capacities

<u>File Edit Help</u>


Property	Temperature	Heat capacity at vapor saturation pressure Csat	Entropy	Enthalpy function {H(T)-H(0)}/T	
Units	К	ALL OTHER UNITS	ALL OTHER UNITS	ALL OTHER UNITS	
1	225.30	19.362	24.575	14.984	
2	240.00	19.772	25.812	15.264	
3	260.00	20.410	27.419	15.635	
4	280.00	21.133	28.958	16.001	
5	298.15	21.848	30.307	16.335	
6	300.00	21.923	30.442	16.369	
7	320.00	22.765	31.884	16.743	
8	340.00	23.642	33.290	17.122	
9	360.00	24.554	34.667	17.510	
10	380.00	25.490	36.020	17.905	
11	400.00	26.444	37.351	18.308	
12	420.00	27.419	38.665	18.719	

Data capture continues for the next phase exactly as shown in pages 13 through 22 of this PDF example.

When data capture for the phase is complete, this screen will reappear. Continue with any additional **PHASES** or **CLICK OK** and **Done**, as indicated below.

Edit Help perty Temp its K.	nperature	Heat capacity at vapor saturat ALL OTHER UNITS		e been processed enter or paste data	Enthalpy function (H(T)-H ALL OTHER UNITS	X			
	nperature	ALL OTHER UNITS		e been processed enter or paste data	ALL OTHER UNITS	X			
	(CK O	K.	for another phase and pr				
	(1. CLI	GDC Your data have	e been processed enter or paste data					
				<u></u>	OK J				
					data	for a	C <i>Don</i> Ill pha I capt	ases	
-									
					- 1			1	
				Clear the	i lable		Proc	ess	Done

Continue with other compounds, samples, properties, reactions, etc...

or save your file and exit the program.