
METADATA AND NUMERICAL DATA CAPTURE: Liquid-Liquid Equilibria

(3-Component: Tie-Line Data)

Guided Data
Capture (GDC)

This tutorial decribes

METADATA AND NUMERICAL DATA CAPTURE:

for Liquid-Liquid Equilibria (3 components)

TIE-LINE DATA

with the Guided Data Capture (GDC) software.

NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

Compounds, samples, properties, etc., can be added or modified at any time.

However, the hierarchy must be maintained (i.e., a property cannot be entered, if there is no associated sample or compound.)

The experimental data used in this example is from:

J. Chem. Eng. Data 2002, 47, 1007-1011

1007

Liquid-Liquid Equilibria of Octane + (Benzene or Toluene or m-Xylene) + Sulfolane at 323.15, 348.15, and 373.15 K

Wen-Churng Lin* and Nien-Hsin Kao

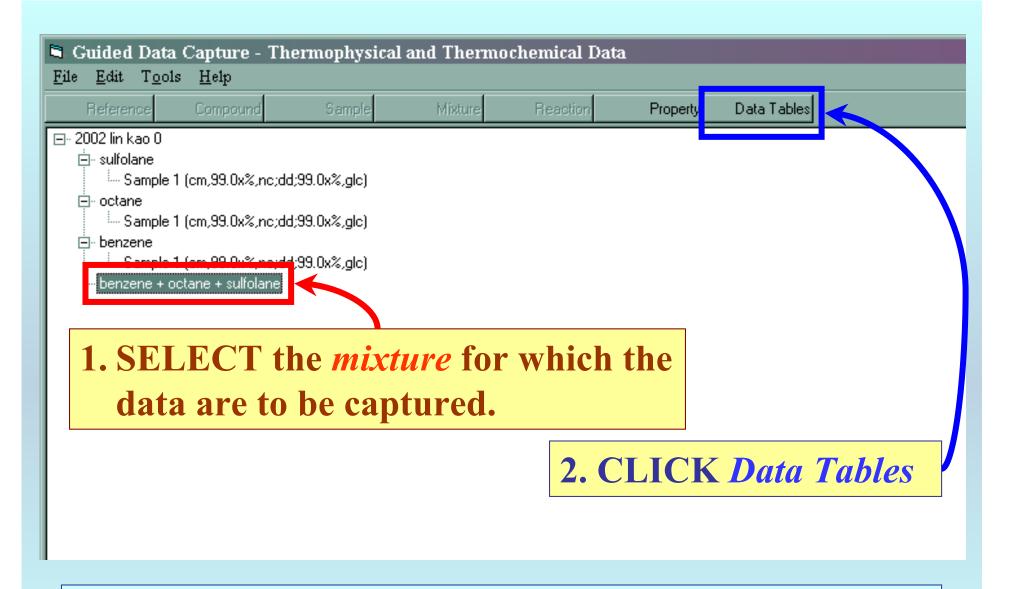
Department of Environmental Engineering, Kun Shan University of Technology, Tainan 710, Taiwan

Equilibrium tie line data have been determined at 323.15 K, 348.15 K, and 373.15 K for the ternary liquid—liquid equilibria (LLE) of octane + (benzene or toluene or *m*-xylene) + sulfolane systems. The relative mutual solubility of benzene is higher than that of toluene or *m*-xylene in octane + sulfolane mixtures. The tie line data were correlated with the NRTL and UNIQUAC models. The calculated values based on the NRTL model were found to be better than those based on the UNIQUAC model; the average root-mean-square deviation between the phase composition obtained from experiment and that from calculation was 0.49 for NRTL compared to 0.53 for UNIQUAC. The values of selectivity and the distribution coefficient were derived from the equilibrium data at different temperatures.

LLE data for (octane + benzene + sulfolane) at p = 101.3 kPa

Table 1. Experimental LLE Data, Selectivities, S, and Distribution Coefficients, κ , for the System

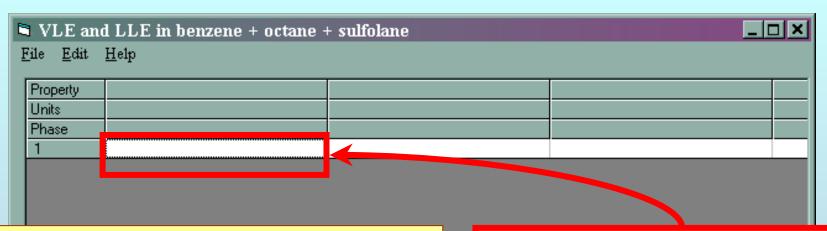
	octar	ie-rich p	hase	sulfola	me-rich	phase		
77K	<i>x</i> ₁₁	x_{21}	X31	x_{13}	x_{23}	X33	5	К
	Oct	ane (1)	+ Berize	ane (2) +	- Sulfola	me (3)		
323.15	0.997	0.000	0.003	0.006	0.000	0.994		
	0.905	0.091	0.004	0.013	0.045	0.942	34	0.49
	0.815	0.178	0.007	0.017	0.106	0.877	2 9 2 7	0.60
	0.732	0.259	0.009	0.017	0.162	0.821		0.63
	0.657	0.336	0.007	0.016	0.216	0.768		0.64
	0.550	0.434	0.016	0.016	0.289	0.695	23	0.67
	0.335	0.625	0.040	0.028	0.477	0.495	9	0.76
	0.279	0.668	0.053	0.034	0.535	0.431	7	0.80
348.15	0.993	0.000	0.007	0.011	0.000	0.989		
	0.897	0.093	0.010	0.013	0.044	0.943	33	0.47
	0.813	0.175	0.012	0.014	0.100	0.886	3 3 2 4	0.57
	0.712	0.272	0.016	0.019	0.176	0.805		7.65
	0.604	0.376	0.020	0.027	0.248	0.725	15	0 66
	0.475	0.491	0.034	0.033	0.349	0.618	10	0.1
	0.408	0.548	0.044	0.041	0.409	0.550	7	0.75
	0.328	0.617	0.055	0.046	0.490	0.464	S	0.7
373.15	0.992	0.000	0.008	0.013	0.000	0.987		
	0.893	0.093	0.014	0.013	0.044	0.943	32 30	0.48
	0.812	0.173	0.015	0.015	0.097	0.888	30	0.56
	0.720	0.259	0.021	0.015	0.140	0.845	3 2 3 0 2 6 1 5	0.54
	0.646	0.334	0.020	0.028	0.214	0.758		0.64
	0.476	0.477	0.047	0.032	0.281	0.687	9	0.5
	0.399	0.532	0.069	0.050	0.398	0.552	S	0.7
	0.300	0.598	0.102	0.057	0.482	0.461	4	0.8


Experimental Method Info:

The sample analysis was performed using a Hewlett-Packard Model 5890 gas chromatograph equipped with a flame ionization detector and a HP Ultra 1 column (cross-linked methyl silicone gum, 25 m \times 3.2 \times 10⁻⁴ m \times 5.2 \times 10⁻⁷ m film thickness)

Mass fraction measurements were reproducible to within ± 0.005 .


Temperatures were controlled to $\pm 0.03\ K.$


This data set is considered here.

NOTE: The bibliographic information, compound identities, sample descriptions, and mixture were entered previously. (There are separate tutorials related to capture of this information.)

This form appears:

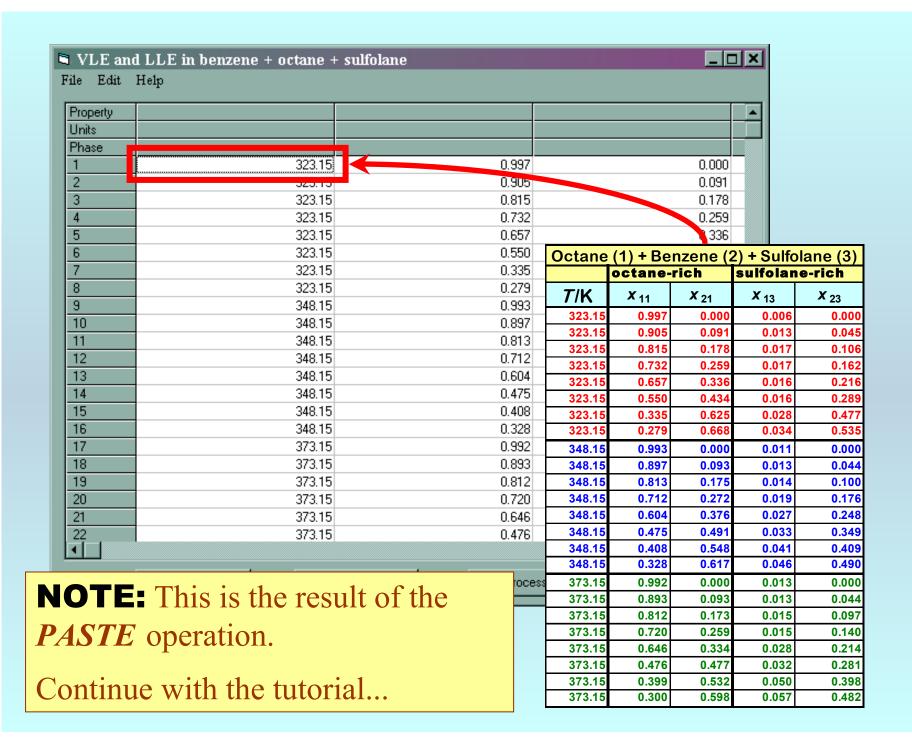
PASTE (or much less preferably, **TYPE**) the experimental data into the *TABLE*.

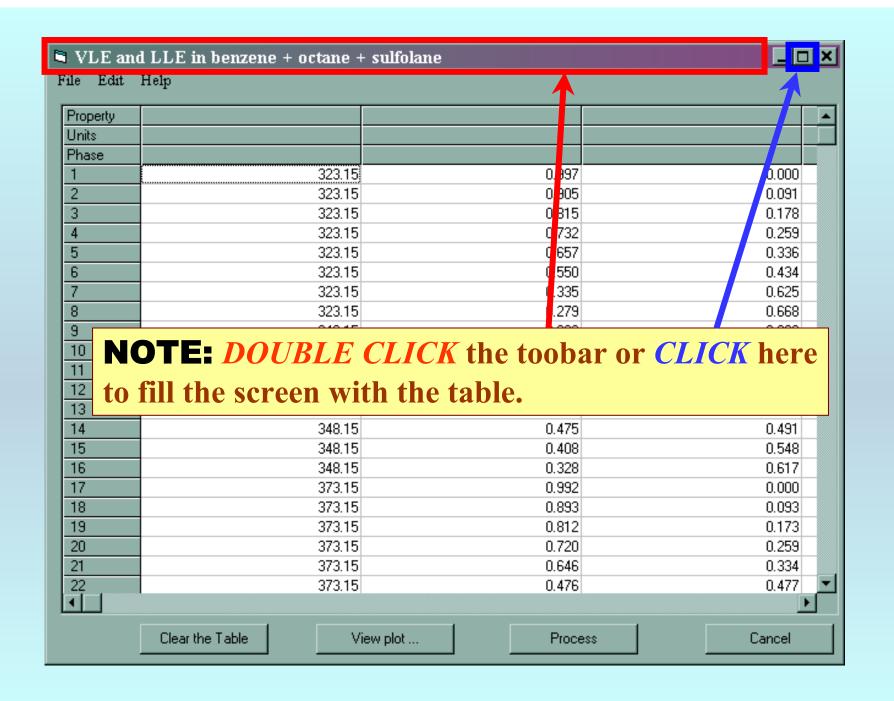
NOTE: The data table may require minor transformation either before or after the PASTE operation.

See the next page...

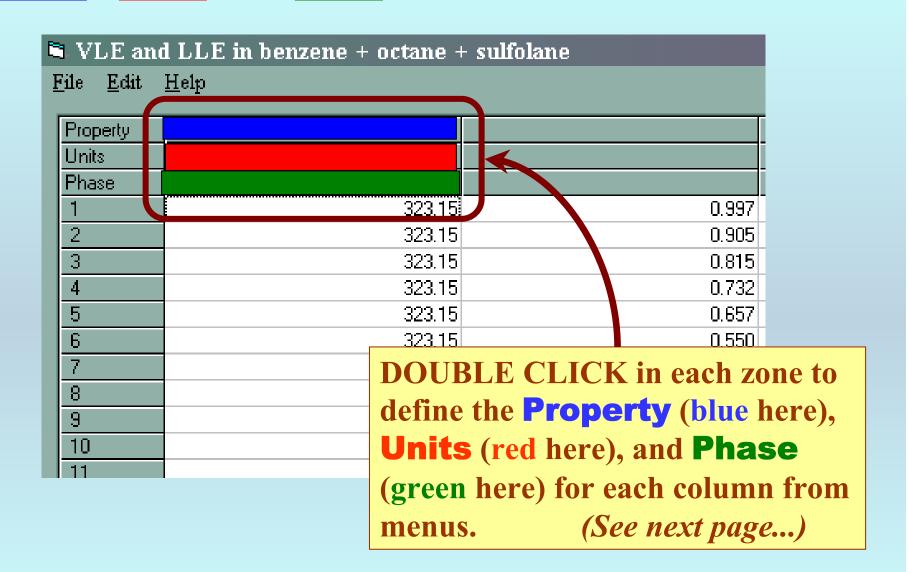
Table 1. Experimental LLE Data, Selectivities, S, and Distribution Coefficients, κ , for the System

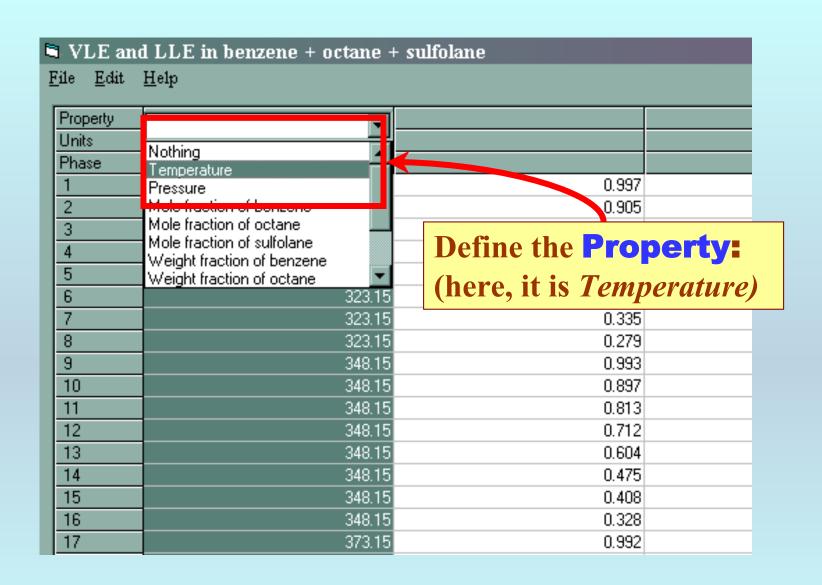
ı		octar	ie-rich p	hase	sulfola	me-rich	phase		
ı	77K	x ₁₁	x_{21}	X31	X ₁₃	X_{23}	X33	S	к
ı				+ Benze	ene (2) ±				
ı	323.15	0.997	0.000	0.003	0.006	0.000	0.994		
ı		0.905	0.091	0.004	0.013	0.045	0.942	34	0.49
ı		0.815	0.178	0.007	0.017	0.106	0.877	29	0.60
ı		0.732	0.259	0.009	0.017	0.162	0.821	27	0.63
ı		0.657	0.336	0.007	0.016	0.216	0.768	26	0.64
ı		0.550	0.434	0.016	0.016	0.289	0.695	23	0.67
ı		0.335	0.625	0.040	0.028	0.477	0.495	9	0.76
ı		0.279	0.668	0.053	0.034	0.535	0.431	7	0.80
ı	348.15	0.993	0.000	0.007	0.011	0.000	0.989		
ı		0.897	0.093	0.010	0.013	0.044	0.943	33	0.47
ı		0.813	0.175	0.012	0.014	0.100	0.886	33	0.57
ı		0.712	0.272	0.016	0.019	0.176	0.805	24	0.65
ı		0.604	0.376	0.020	0.027	0.248	0.725	15	0.66
ı		0.475	0.491	0.034	0.033	0.349	0.618	10	0.71
ı		0.408	0.548	0.044	0.041	0.409	0.550	7	0.75
ı		0.328	0.617	0.055	0.046	0.490	0.464	6	0.79
ı	373.15	0.992	0.000	0.008	0.013	0.000	0.987		
		0.893	0.093	0.014	0.013	0.044	0.943	32	0.48
8		0.812	0.173	0.015	0.015	0.097	0.888	30	0.56
ı		0.720	0.259	0.021	0.015	0.140	0.845	26	0.54
ı		0.646	0.334	0.020	0.028	0.214	0.758	15	0.64
		0.476	0.477	0.047	0.032	0.281	0.687	9	0.59
		0.399	0.532	0.069	0.050	0.398	0.552	6	0.75
		0.300	0.598	0.102	0.057	0.482	0.461	4	0.81

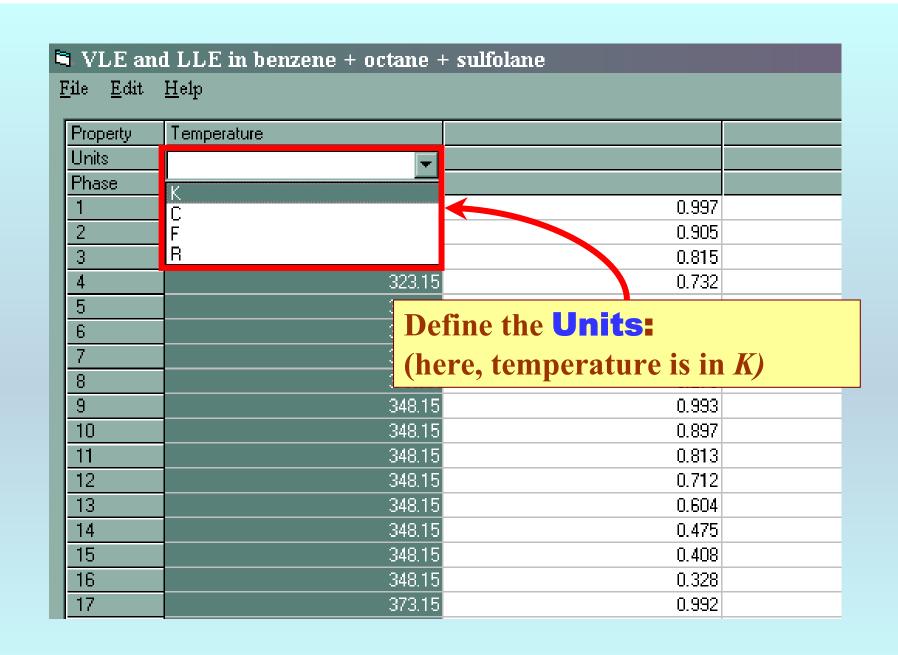

Table Transformation

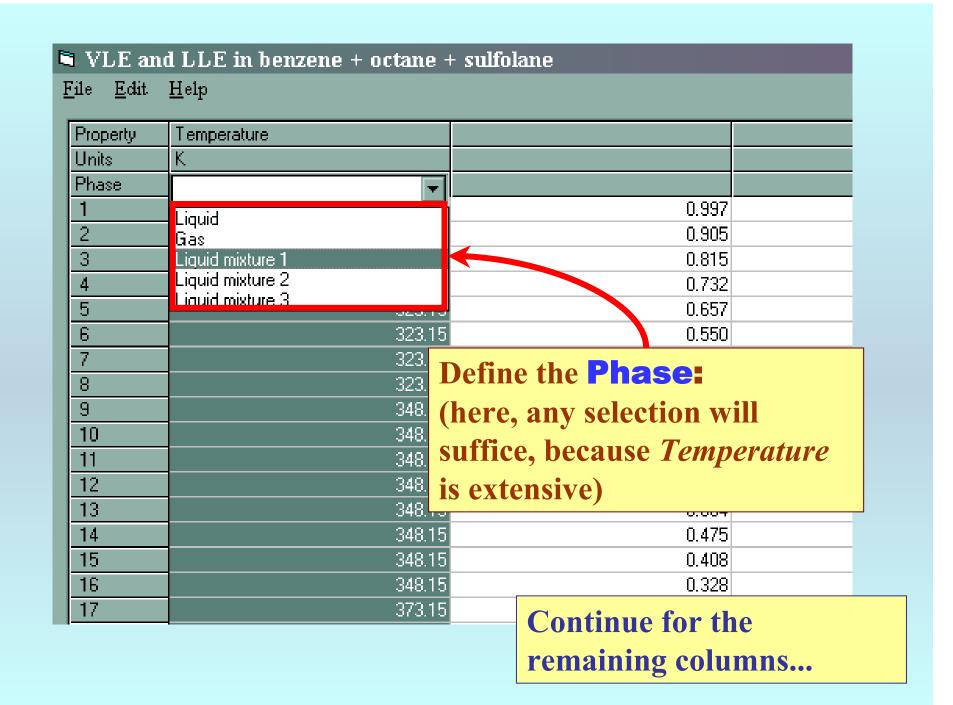

Table 1. Exp	erimen	tal LLE	Data, S	electiv	ities,	<i>S</i> , and
Distribution	Coeffic	ients, <i>k</i> ,	for the	System	n	
			10.1			

	octar	ie-rich p	hase	sulfola	phase			
77K	X ₁₁	x_{21}	X ₃₁	X ₁₃	χ_{23}	X33	S	K
000 15	Oct	ane (1)	+ Benze	ene (2) +	Sulfola	ne (3)	1	
323.15	0.997	0.000	0.003	0.006	0.000	0.994	Ν.,	
	0.905	0.091	0.004 0.007	0.013	0.045	0.947	84	0.49
	0.815	0.178		0.017	0.106	0.877	59	0.60
	0.732	0.259	9.009	0.017	0.162	$0.821 \\ 0.768$	3 7	0.63
	0.657	0.336	0.007	0.016	0.216		27 26 28	0.44
	0.550	0.434	9.9/6	0.016	0.289	0.695 0.495	28	0.67
	0.335	0.625	0.040	0.028	0.477	0.495	<u>9</u>	0/76
0.40 15	0.279	0.668	0053 0007	0.034	0.535	0.431 0.939	1	0.80
348.15	0.993	0.000	0.107	0.011	0.000	0.43	22	M 47
	0.897	0.093	0. 12	0.013	0.044		33 33	0.47
	0.813	0.175		$0.014 \\ 0.019$	0.100			0.57
	0.712	$0.272 \\ 0.376$	0. 16 0.(20	0.019 0.027	$0.176 \\ 0.248$	0.805	24	0.65
	0.604	0.376 0.491	0.034	0.027	0.246 0.349	0. 25	15 10	0.66
	$0.475 \\ 0.408$	0.491 0.548	The same of the sa	0.033 0.041	0.349 0.409	0.8.0	7	X
	0.408	0.546	0 0 44 0.055	0.041	0.409	0.464	6	0.75 0.79
373.15	0.328	0.000	0.008	0.013	0.000		9	4.73
373.10	0.893	0.003	0.014	0.013	0.044	0.987 0.948	31	0.48
	0.812	0.173	#ib3	0.015	0.097	0.881	20	0.16
	0.720	0.173	6.d2¥	0.015	0.037	0.848	30 28	0.34
	0.646	0.334	5.020	0.018	0.214	0.758	7_5	0.64
	0.476	0.334	0.04λ	0.028	0.281	D. 887	9	0.59
1	0.399	0.532	0.069	0.050	0.398	0.552	6	0.73
V	0.300	0.598	0.102	0.057	0.382	0.461	$\frac{3}{4}$	0.81


Octane (1) + Benzene (2) + Sulfolane (3)							
	octane-	rich	sulfolar	e-rich			
T/K	<i>X</i> ₁₁	<i>X</i> ₂₁	X ₁₃	X 23			
323.15	0.997	0.000	0.006	0.000			
323.15	0.905	0.091	0.013	0.045			
323.15	0.815	0.178	0.017	0.106			
323.15	0.732	0.259	0.017	0.162			
323.15	0.657	0.336	0.016	0.216			
323.15	0.550	0.434	0.016	0.289			
323.15	0.335	0.625	0.028	0.477			
323.15	0.279	0.668	0.034	0.535			
348.15	0.993	0.000	0.011	0.000			
348.15	0.897	0.093	0.013	0.044			
348.15	0.813	0.175	0.014	0.100			
348.15	0.712	0.272	0.019	0.176			
348.15	0.604	0.376	0.027	0.248			
348.15	0.475	0.491	0.033	0.349			
348.15	0.408	0.548	0.041	0.409			
348.15	0.328	0.617	0.046	0.490			
373.15	0.992	0.000	0.013	0.000			
373.15	0.893	0.093	0.013	0.044			
373.15	0.812	0.173	0.015	0.097			
373.15	0.720	0.259	0.015	0.140			
373.15	0.646	0.334	0.028	0.214			
373.15	0.476	0.477	0.032	0.281			
373.15	0.399	0.532	0.050	0.398			
373.15	0.300	0.598	0.057	0.482			

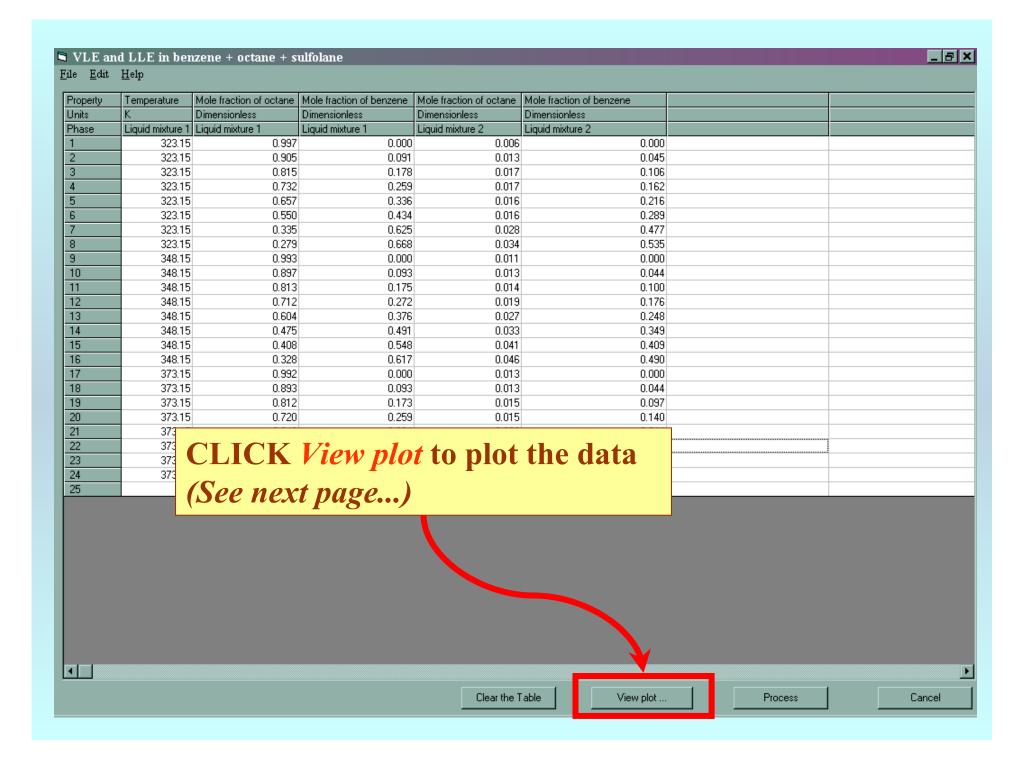

Note: The GDC software includes many useful table operations. See the *HELP* menu on the screen for details. Alternatively, any spreadsheet software (e.g., EXCEL) can be used.

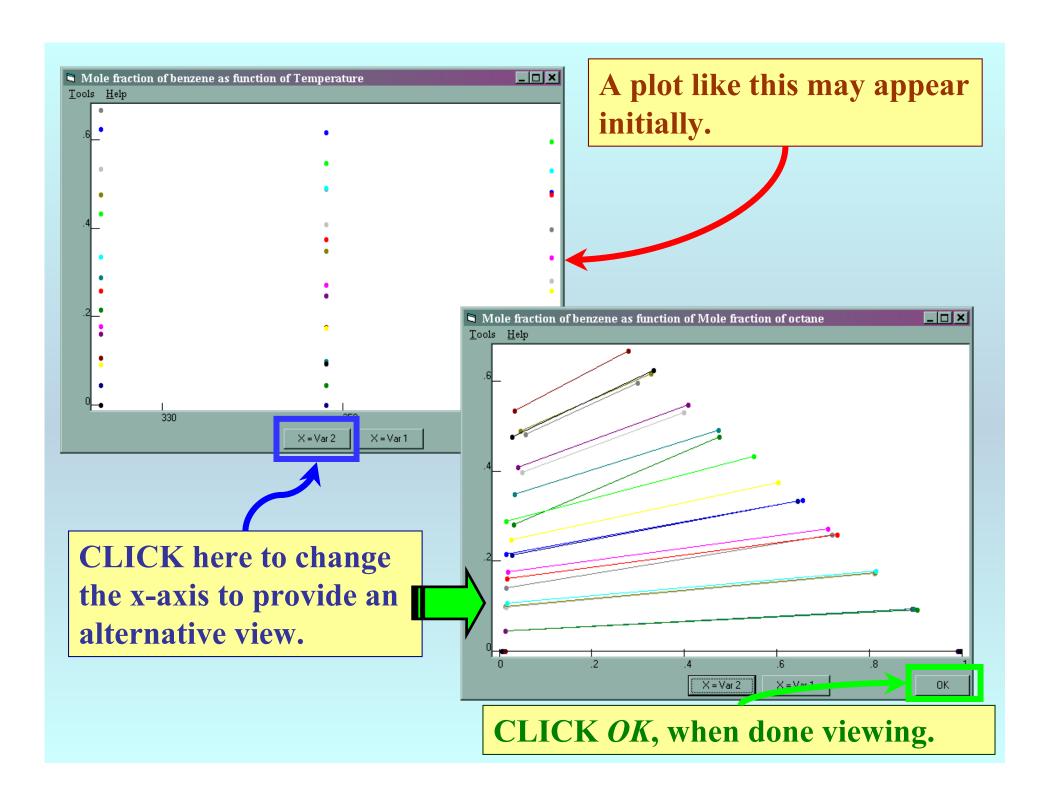


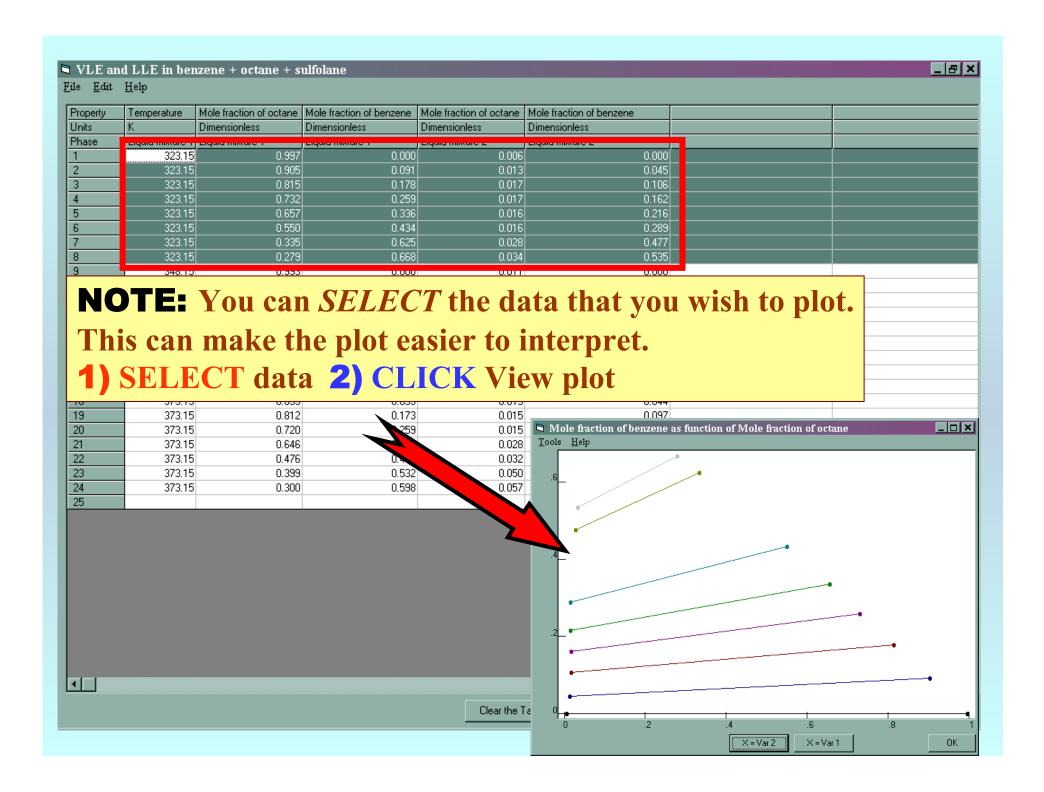


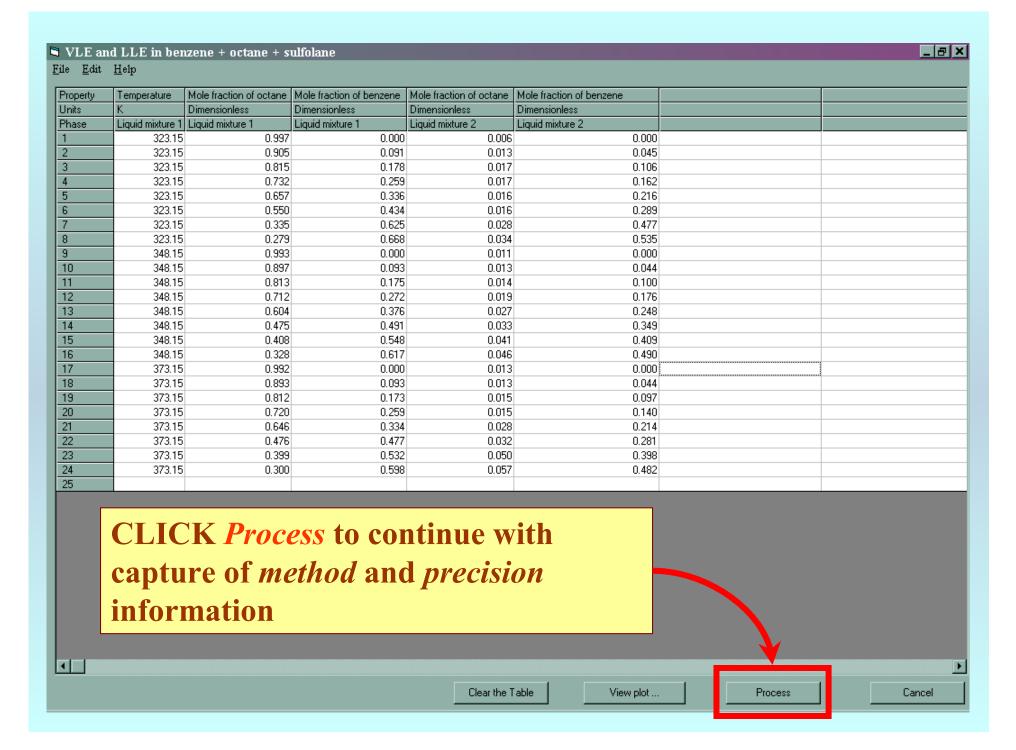
Property, Units, and Phase Definitions:

■ VLE and LLE in benzene + octane + sulfolane

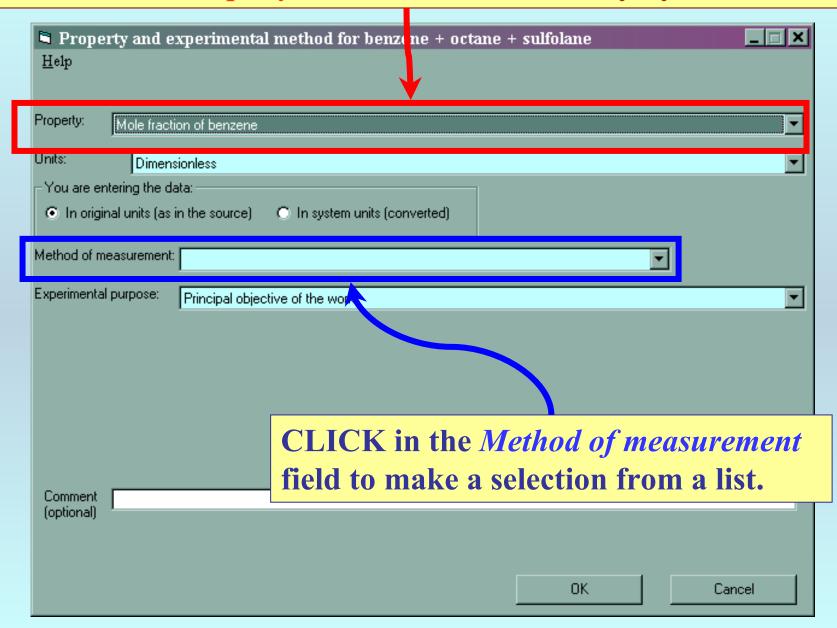

<u>F</u> ile	<u>E</u> dit	<u>H</u> elp
--------------	--------------	--------------

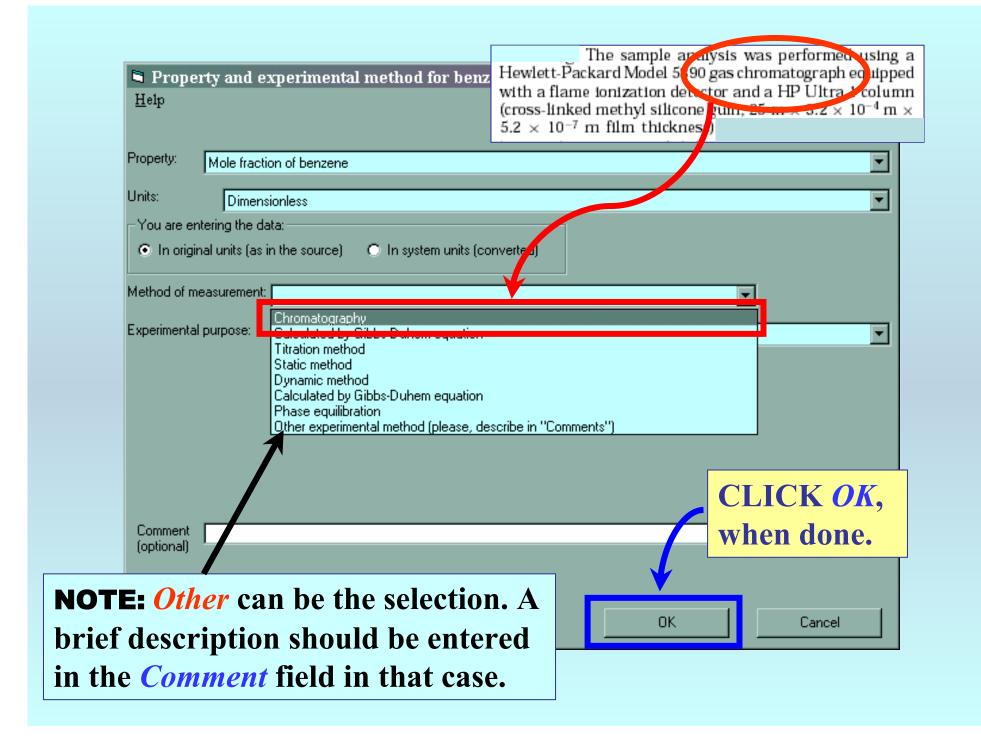

ь.	T	14 1 7 7 7 7 1	14 1 7 2 71	11 1 7 7 7 7 1	
Property	Temperature	Mole fraction of octane	Mole fraction of benzene	Mole fraction of octane	Mole fraction of benzene
Units	K	Dimensionless	Dimensionless	Dimensionless	Mole fraction of benzene
Phase	Liquid mixture 1		Liquid mixture 1	Liquid mixture 2	Mole fraction of octane
1	323.15		0.000		Mole fraction of sulfolane
2	323.15		0.091		Weight fraction of benzene
3	323.15		0.178	0.017	Weight fraction of octane Weight fraction of sulfolane
4	323.15		0.259	0.017	Molarity of benzene
5	323.15		0.336		Molarity of octane
6	323.15		2.434	0.018	0.203
7	323.15		0.625	0.028	0.477
8	323.15		0.668	0.034	
	348.15	0.993	0.000	0.011	0.000
9	340.13				
10		¥ 7 .		• . •	0.044
10 11		Various con	mmon comp	osition spec	ifications 0.100
10 11 12	Note:		mmon comp	-	ifications 0.100
10 11 12 13	Note:		mmon comp (i.e., mole fra	-	ifications 0.100 0.176 0.248
10 11 12 13 14	Note:	omodated, (-	ifications 0.100
10 11 12 13	Note:	omodated, (-	ifications 0.100 0.176 0.248
10 11 12 13 14	Note:	omodated, (-	ifications 0.100 0.176 0.248 0.349
10 11 12 13 14 15 16	Note:	omodated, (-	ifications 0.100 0.176 0.248 0.349 0.409
10 11 12 13 14 15	Note: are accomolarity	omodated, (y, etc.)	(i.e., mole fra	ection, mass	ifications 0.100 0.176 0.248 0.349 0.409 0.490
10 11 12 13 14 15 16	Note: are accomolarity	omodated, (y, etc.)		ection, mass	ifications 0.100 0.176 0.248 0.349 0.409 0.490 0.000
10 11 12 13 14 15 16 17	Note: are accomolarity	omodated, (y, etc.) make selecti	i.e., mole fra	ection, mass	ifications 0.100 0.176 0.248 0.349 0.409 0.490 0.000 0.044 0.097
10 11 12 13 14 15 16 17 18 19 20 21	Note: are accomolarity Please	omodated, (y, etc.) make selecti	i.e., mole fra	ection, mass	ifications
10 11 12 13 14 15 16 17 18 19	Note: are accomolarity Please 1	omodated, (y, etc.) make selecti	ions with car	ection, mass	ifications
10 11 12 13 14 15 16 17 18 19 20 21	Note: are accomolarity Please 1 373.15 373.15	omodated, (y, etc.) make selection 0.720 0.646 0.476	i.e., mole fra	ection, mass e 0.015 0.028	ifications
10 11 12 13 14 15 16 17 18 19 20 21	Note: are accomolarity Please 1 373.15 373.15 373.15	omodated, (y, etc.) make selecti 0.720 0.646 0.476 0.399	i.e., mole fra ions with car 0.259 0.334 0.477	ection, mass 0.015 0.028 0.032	ifications


▶ VLE and LLE in benzene + octane + sulfolane


File Edit Help

Property	Temperature	Mole fraction of octane	Mole fraction	n of benzene	Mole fraction of octane	Mole fraction of benzene
Units	K	Dimensionless			Dimensionless	Dimensionless
Phase	Liquid mixture 1	Liquid mixture 1	Liquid mixtu	re 1	Liquid mixture 2	Liquid mixture 2
1	323.15	0.997		0.000	0.006	0.000
2	323.15	0.905		0.091	0.013	0.045
3	323.15	2815		0.178	0.037	0.106
4	323.15	0.732		0.259	0.017	0.162
5	323.15	0.657		0.39%	0.016	0.216
6	323.15	0.550		0 4 34	0.016	0.289
7	323.15	0.335		0.625	0.028	0.477
8	323.15	0.279		0.668	0.034	0.535
9	3//8/15	U 993		0.000	0.011	0.000
10	IOTE: /	JOUID MIX	TIIRE	7 and	LIQUID ML	XTIIRE 2 0.044
					Ligot Min	0.100
12 ic	lentify th	ne two liquid	phase	es.		0.176
13	340.13	0.004	_	0.376	0.027	0.248
14	348.15	0.475		0.491	0.033	0.349
15	348.15	0.408		0.548	0.041	0.409
16	348.15	0.328		0.617	0.046	0.490
17	373.15	0.992		0.000	0.013	0.000
18	373.15	0.893		0.093	0.013	0.044
19	373.15	0.812		0.173	0.015	0.097
20	373.15	0.720		0.259	0.015	0.140
21	373.15	0.646		0.334	0.028	0.214
22	373.15	0.476		0.477	0.032	0.281
23	373.15	0.399		0.532	0.050	0.398
24	373.15	0.300		0.598	0.057	0.482
25						

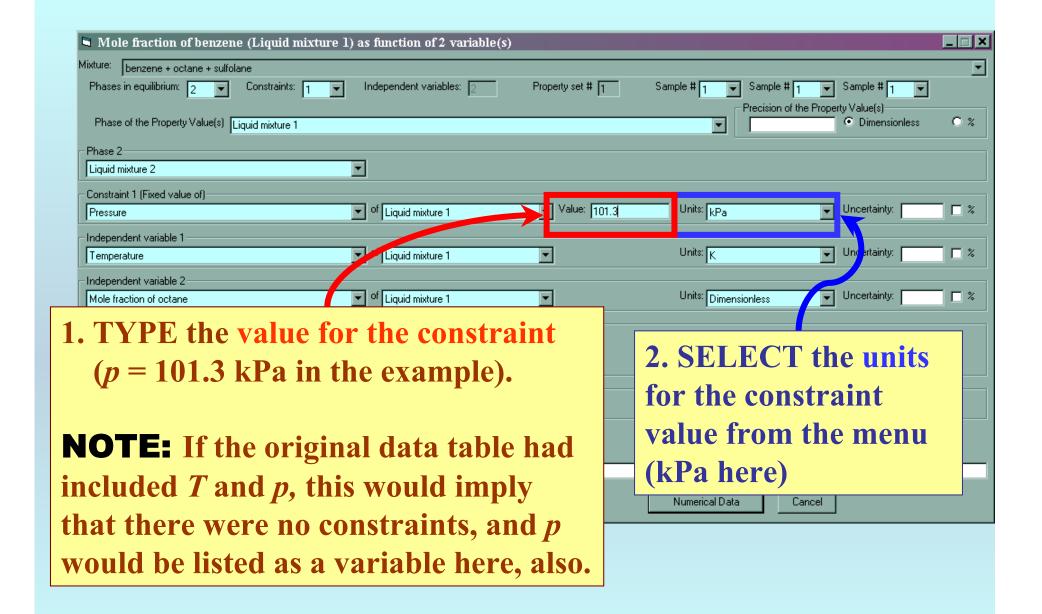


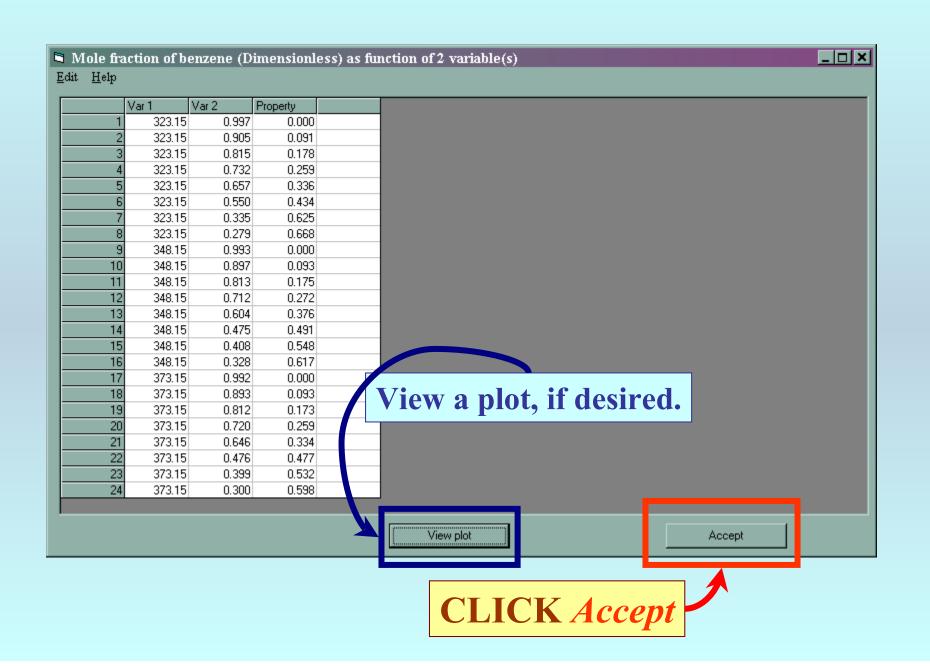


NOTE: The GDC software *automatically* divides the entered table of LLE data into an appropriate number of separate data sets (*two in the present example*) based on the Gibbs Phase rule.

The following screens capture information concerning the experimental methods and precisions for the data.

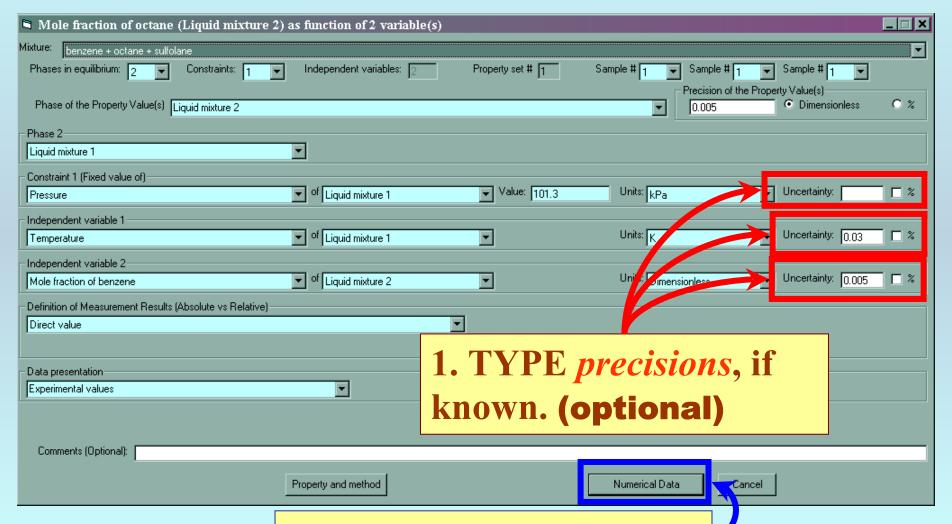
NOTE: The first *Property* is selected automatically by the software.



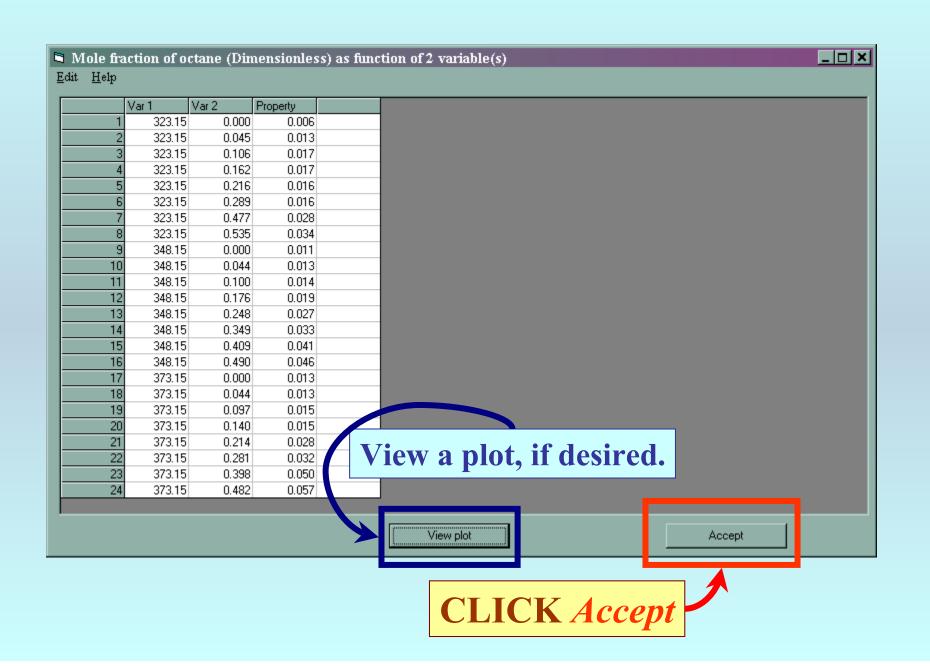

NOTE: Based on the information pasted into the original table, the GDC software determines the # of *phases in equilibrium* and *contraints*. These fields are defined by the program.

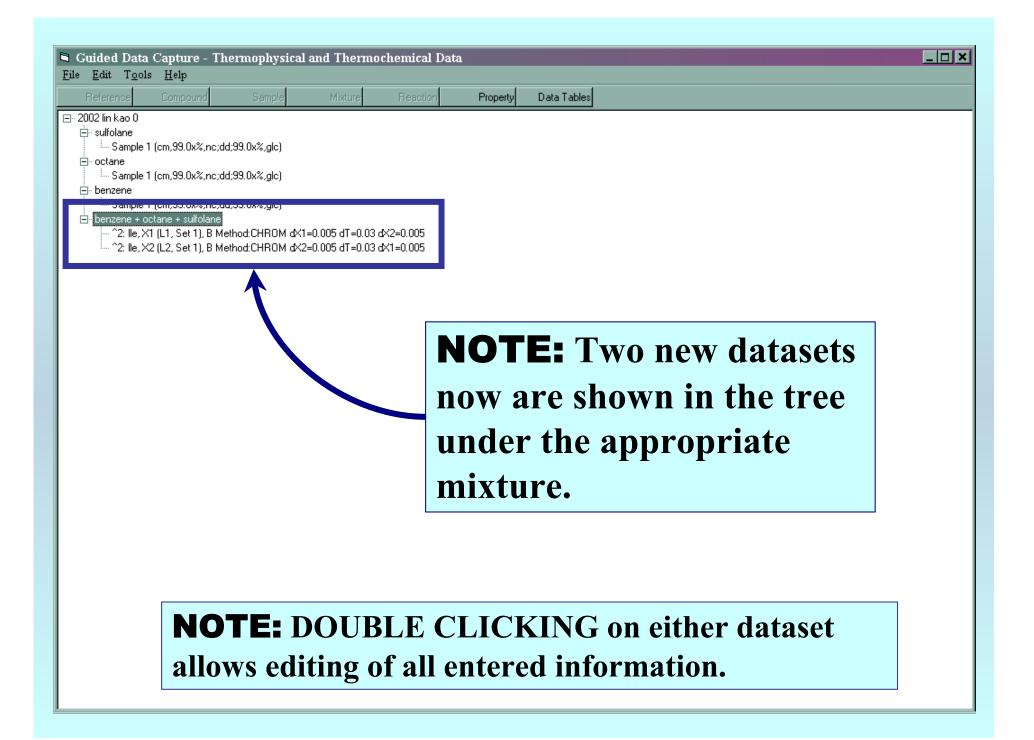
Mole fraction of benzene (Liquid mixture	1) as function of 2 variable				
Mixture: benzene + octane + sulfolane					F
Phases in equilibrium: 2 🔻 Constraints: 1 🔻	Independent variables: 2	Property set # 1	Sample # 1 ▼ Sample :	# 1 Sample # 1 🔻	
Dhara of the December Vehicle) To a constant				of the Property Value(s)————————————————————————————————————	0 %
Phase of the Property Value(s) Liquid mixture 1			<u> </u>	© Dimensionless	
Phase 2					
Liquid mixture 2					
Constraint 1 (Fixed value of)		- Value	113	- Harrista	
Pressure		▼ Value:	Units: kPa	Uncertainty:	□ %
Independent variable 1			Haiter L.		
Temperature	of Liquid mixture 1	▼	Units: K	Uncertainty:	□ %
Independent variable 2			Haitan -	I I I I I I I I I I I I I I I I I I I	
Mole fraction of octane	of Liquid mixture 1	▼	Units: Dimensionless	Uncertainty:	□ %
Definition of Measurement Results (Absolute vs Relative)					
Direct value					
Data presentation					
Experimental values					
Comments (Optional):					
Comments (optional).					
	Property and method		Numerical Data	Cancel	

Continue with the tutorial...



1. TYPE estimated precisions for the *property*, *constraint(s)*, and independent-variable value(s). **NOTE:** This is **optional**. Fields can be left blank, if no estimate is available. Mixture: benzene + octane + sulfolane Phases in equilibrium: 2 vty set # 1 Constraints: 1 Independent variables: Sample # 1 Sample # Sample # 1 Precision of the Property Value(s) Phase of the Property Value(s) Liquid mixture 1 Dimensionless 0.005 Phase 2 ▼ Liquid mixture 2 Constraint 1 (Fixed value of): ▼ Value: 10 Units: kPa of Liquid mixture 1 Uncertainty: Pressure Independent variable 1 of Liquid mixture 1 Units: K Uncertainty: 0.03 Temperature Independent variable 2 Uncertainty: 0.005 Units: Dimensionless Mole fraction of octane Eliquia mixture Definition of Measurement Results (Absolute vs Relative) Direct value ◥ **NOTE:** These are items are pre-Data presentation selected by the software and rarely Experimental values need to be changed. Comments (Optional): Property and method Numerical Data Cancel Recall... Mass fraction measurements were reproducible to within ± 0.005 . 2. CLICK Numerical Data Temperatures were controlled to ± 0.03 K.




Continue with data capture for the second dataset obtained based upon the LLE data table.

NOTE: Most fields are filled automatically by the software.

2. CLICK Numerical Data

END

Continue with other compounds, samples, properties, reactions, etc...

or save your file and exit the program.