BIOTHERMODYNAMIC DATA CAPTURE

Example: Results from Titration Calorimetry (Binding Properties)

Data source: Todorova, N. A.; Schwarz, F. P. J. Chem. Thermodyn., 2007, 39, 1038-1048.

General Experiment Description: Drug binding properties for betacyclodextrin to NAB (nabumetone) derived from titration calorimetry

Target Properties for the example: equilibrium constant, Gibbs energy, enthalpy, and entropy for the binding reaction

Bibliographic information:

No new additions were made to GDC for biothermodynamic data.

See: <u>http://www.trc.nist.gov/GDC.html</u> for general help. See: <u>http://www.trc.nist.gov/helpdocs/basic/BIBLIOGRAPHICinfo.pdf</u> for specific help on entering bibliographic information.

Here is the captured bibliographic information for the example:

Literature source description
elp
Type of document: Journal article
Title: The role of water in the thermodynamics of drug binding to cyclodextrin
Authors: Todorova, N. A.[Niya A.]; Schwartz, F. P.[Fred P.]
Source: @J. Chem. Thermodyn.@ \$39\$, 1038-1048
Year: 2007
Key words: Cyclodextrin; Drug-binding; Isothermal titration calorimetry; Thermodynamics; Water
Abstract (if available): The thermodynamic parameters, DBG, DBH, DBS, and DBCp, of the drugs flurbiprofen (FLP), nabumetone (NAB), and naproxen (NPX) binding to b-cyclodextrin (bCD) and to c-cyclodextrin (cCD) in 0.10 M sodium phosphate buffer were determined from isothermal titration calorimetry (ITC) measurements over the temperature range from 293.15 K to 313.15 K. The heat capacity changes for the binding reactions ranged from (362 + 48) J Ae mol 1 Ae K 1 for FLP and (238 + 90) J Ae mol 1 Ae K 1 for NAB binding in the bCD cavity to 0 for FLP and (25.1 + 9.2) J Ae mol 1 Ae K 1 for NPX binding in the larger cCD cavity, implying that the structure of water is reorganized in the bCD binding reactions but not reorganized in the cCD binding reactions. Comparison of the fluorescence enhancements of FLP and NAB upon transferring from the aqueous buffer to isopropanol with the
Accept Cancel

Compound Selection/Addition:

Compound Selection or Addition is very similar to that traditionally used in GDC.

See: http://www.trc.nist.gov/helpdocs/basic/COMPOUNDselection.pdf

and

See: <u>http://www.trc.nist.gov/helpdocs/basic/COMPOUNDaddition.pdf</u>

New Features:

- 1. Capture of EC (Enzyme Commission) Number is supported
- 2. Capture of PDB (Protein Data Bank) Number is supported
- 3. Symbolic formulas are supported (in brackets {*}) to support substances of unspecified empirical formula

Substance			
Help			
	3 Empirical fo	ormula (Case sensitive): {LZ}	
Name: lysozyme			
Search results:			
EC Number		DDP Number	
		3.2.1.17	
Molar Mass:		2	OK Cancel

After capture of bibliographic info and specification of the reaction components, the Main GDC form looks like this...

Guided Data	Capture - The	rmopnysical ai	nd Thermoc	hemical Data				$\mathbf{\nabla}$
<u>F</u> ile <u>E</u> dit T <u>o</u> ols	Help							
Reference	Compound	Sample	Mixture	Reaction	Property	Data Tables	Bio	
P- 2007 tod sch 0 betacyclo - Sample - 2-butanone, - Sample	dextrin 1 (cm,98w%,spl;x;) , 4-(6-methoxy-2-na 1 (cm;x;)) aphthalenyl)-	to en	ter the	Bio R	eaction.	<u> </u>	

Initiation of Bio Reaction property capture...

Next...

The **Bio Reaction Properties** form appears...

Bio Reaction Properties	Tabs to navigate between forms for the Reaction , Environment, Constraints, Variables , and Properties are analogous to those for DSC properties								
Help	Shown in Example	e I.							
=									
Reaction Environment Constraints Variables F									
Participants C Chemical Reaction C Biohemical Reaction	on		Balance React	on	Check Stoichiometry	Next			
New		 Sample	•	Coefficient	Phas	e Solution	<u> </u>		
	•	Sample	-	Coefficient	Phas	e	•		
	•	Sample	-	Coefficient	Phas	e	•		
	•	Sample	-	Coefficient	Phas	e	•		
	•	Sample	-	Coefficient	Phas	e	•		
	•	Sample	-	Coefficient	Phas	e	•		
	•	Sample	-	Coefficient	Phas	e	•		
	•	Sample	-	Coefficient	Phas	e	•		
Method of measurement:						Accept	Cancel		

Define the Reaction:

Note: The reaction is defined as equation (1) on the 2nd page of the article:

 $\beta CD + NPX \iff \beta CD \cdot NPX$

(1)

This is a *chemical* reaction, where the components are explicit (neutral, bound with a counterion, or dissociated)

Define the Environment:

🖨 Bio Reaction Properties	
Help C42H70O35 + C15H16O2 = C57H86O37 Reaction Environment Constraints Variables Properties Other components present	Next
sodium phosphate 🗸 Sample 🖵 Function Buffer component 🔽	Phase Solution 💌
phosphoric acid 🗨 Sample 🖵 Function Buffer component 💌	Phase Solution
Sample Function	Phase 💽
Sample Function	Phase 🔽
Sample Function	Phase 🔽
Sample Function	Phase 🗾
Sample Function	Phase
▼ Sample ▼ Function ▼	Phase 🗾
Method of measurement: Isothermal titration calorine Solvent Catalyst Cofactor Inert	t Accept Cancel
	INEXL

Define the Constraints:

Bio Reaction Properties	
Help	
C42H70O35 + C15H16O2 = C57H86O37	
Reaction Environment Constraints Variables Properties 1. Select co	onstraints
	Next
Pressure	Value: 101.3 kPa Uncert. 🗆 🗆 %
MolaRity 💽 sodium phosphate	value: 0,1 mol/dm3 Uncert. □ %
MolaRity phosphoric acid	value: 0,1 mol/dm3 Uncert. □ %
pH	Value: 7,1 Uncert. 🔽 🎖
	value: Uncert.
	value: Uncert. □ %
	value: Uncert. □ %
	Value: Uncert 🗆 🗖 🎖
Method of measurement: Isothermal titration calorimetry	Accept Cancel
	3 Enter uncertainties for constraints

3. Enter uncertainties for constraints, if known (absolute or percent)

Next tab...

Define the Variables:

Bio Reaction Properties	_ 🗆 🛛
Help	
C42H70O35 + C15H16O2 = C57H86O37	
Reaction Environment Constraints Variables Properties 1. Select variables	
Next Next	
Var.1 Temperature K Uncert.	
Uncert.	
Uncert.	
2. Enter uncertainties, if known	
▼ Uncert.	
Method of measurement: Isothermal titration calorimetry Accept	Cancel

Next tab...

Define the Properties:

Bio Reaction Properties		
Help		
C42H70O35 + C15H16O2 = C57H86O37	Ne	ot to
Reaction Environment Constraints Variables Properties	Data	a Table
1. Sel	ect properties	Next
Apparent equilibrium constant (mole fraction)	r -	Uncert. 🛛 🗆 🖉 🎖
Gibbs Energy	•	kJ/mol Uncert. 🔽 🗖 🕷
Enthalpy	•	kJ/mol Uncert. 🔽 🗖 🕷
Entropy	•	kJ/mol Uncert. 🔽 🗖 🎖
		Uncert. 🗌 🗆 %
		Uncert. 🗆 🗆 %
		Uncert.
Method of measurement: Isothermal titration calorimetry	2. Enter uncertainties for prop	Derties Accept Cancel
	 Absolute or percent Uncertainties associated each value can be captur on the next form 	d with are

Enter numerical values for Variables and Properties:

See page 1044 of the example article pdf.

6												
Eile	e <u>E</u> dit <u>A</u>	ction <u>H</u> elp										
Г		Var.1	Prop.1	Unc.1	Prop.2	Unc.2	Prop.3	Unc.3	Prop.4	Unc.4		
		Temperature	Apparent eq		Gibbs Energ		Enthalpy		Entropy			
	1	293.15	3.30	0.36	-19.7	0.3	-13.3	0.3	22.1	0.6		
	1	298.15	3.79	0.69	-20.4	0.4	-11.7	1.9	29.4	4.9		
		303.15	2.94	0.65	-20.1	0.1	-13.6	2.3	21.6	3.6		
	<u></u>	308.15	2.37	0.54	-19.9	0.6	-14.7	1.3	16.8	1.6		
	્	313.15	1.97	0.21	-19.8	0.3	-17.7	4.0	6.6	1.5]	
(Click View plot for graphing options (Not appropriate here)											
				Clear the	e Table	Vie	w plot				Accept	Cancel

Plotting Options: Plot any property against any variable (2-d only)

