BIOTHERMODYNAMIC DATA CAPTURE

Example: Properties determined with differential scanning calorimetry (DSC methods)

Data source: Hinz, H.J.; Schwarz, F. P. Measurement and analysis of results obtained on biological substances with d.s.c., J. Chem. Thermodyn., 2001, 33, 1511-1525.

General Experiment Description: Denaturization of lysozyme studied by DSC with pH and lysozyme concentration varied

Target Properties: T_G , Enthalpy of transition, van't Hoff enthalpy of transition

Bibliographic information:

No new additions were made to GDC for biothermodynamic data.

See: <u>http://www.trc.nist.gov/GDC.html</u> for general help. See: <u>http://www.trc.nist.gov/helpdocs/basic/BIBLIOGRAPHICinfo.pdf</u> for specific help on entering bibliographic information.

Here is the captured bibliographic information for the example:

🛱 Literature	source description	
Help		
Type of docume	nt: Journal article	-
Title: Mea	asurement and analysis of results obtained on biological substances with d.s.c.	
Authors: Hinz	z, H.J.[HansJurgen]; Schwarz, F. P.[Frederick P.]	
Source: 📵	Chem. Thermodyn.@ \$33\$, 1511-1525	
Year: 🛛	2001	
Key words: t	differential scanning calorimetry; lipids; phase transition; proteins; transition enthalpy; transition temperatur transitions	e; unfolding
Abstract (if available): t s f f f f f	The differential scanning calorimeter (d.s.c.) has been widely used to determine the thermodynamics of pl transitions and conformational changes in biological systems including proteins, nucleic acid sequences, assemblies. The d.s.c monitors the temperature difference between two vessels, one containing the biolo solution and the other containing a reference solution, as a function of temperature at a given scan rate. Recommendations for d.s.c. measurement procedures, calibration procedures, and procedures for testing performance of the d.s.c. are described. Analysis of the measurements should include a correction for the response of the instrument and conversion of the power versus time curve to a heat capacity versus tem plot. Thermodynamic transition models should only be applied to the analysis of the heat capacity curves	nase and lipid gical the time perature if the
	Accept	Cancel

Compound Selection/Addition:

Compound Selection or Addition is very similar to that traditionally used in GDC.

See: http://www.trc.nist.gov/helpdocs/basic/COMPOUNDselection.pdf

and

See: <u>http://www.trc.nist.gov/helpdocs/basic/COMPOUNDaddition.pdf</u>

New Features:

- 1. Capture of EC (Enzyme Commission) Number is supported
- 2. Capture of PDB (Protein Data Bank) Number is supported
- 3. Symbolic formulas are supported (in brackets {*}) to support substances of unspecified empirical formula

Substance				
Help				
	3 Empiric	al formula (Case sensitive): {LZ}		
Name: lysozyme				
Search results:				-
J.		DDD Number 1	I.	
EC NUMBER		3.2.1.17	1	
Molar Mass:		2	OK Car	ncel

After capture of bibliographic info and specification of lysozyme, the Main GDC form looks like this...

Initiation of biothermodynamic property data capture...

The **Bio System Properties** form appears

	 1. The Initial and Final states of the substance a Select from pull-down menu or Enter text directly 	are specifie	d first
Help	ties	<u> </u>	
Phase Solution	Variables Properties		sample #
Other components pres	ent Sample S	e Function e Function Function Function Function Function Function Function Function	Next

Composition: Specification (compounds other than the "Substance" under study)

For the example, these are the solution components...

Bio System Properties	
Help	
Substance: Iysozyme	Sample #
Phase Solution Initial state: Native	
Final state: Denatu	2. Select sample numbers
Composition Constraints Variables Properties 1. Select compo	pnents if pecessary (rare)
	li necessary (rare)
	Next
ducine	Sample Function Buffer component
hydrogen chloride	Sample Function Buffer component
water	Sample Function Solvent
New	Sample Function
	Sample Function
Note: Selection of "new" activates the	Sample Function
GDC compound-selection form	Sample Function
Method of measurement: DSC	Accept Cancel
3. Se	elect the "Function" of each component
4. Enter the	Solvent
measurement method	Buffer
	Inert
	Next tab

Constraints: Specification of fixed quantities

For the example, these are the pressure and buffer composition

Bio System Properties				
Help				
Substance: lysozyme			Sample #	•
Phase Solution	Initial state: Native □			
	Final state: Denstured	2. Enter cons	traint values	5
Composition Constraints Variables Properties	1. Select constraints	/		
			N-14	1
Pressure		Value: 101.325 kPa	Uncert.	- %
MolaRity	hydrogen chloride	Value: 0.1 mol/dm3	Uncert.	- %
MolaRity	glycine	Value: 0.1 mol/dm3	Uncert.	- %
		Value:	Uncert.	~ %
•		Value:	Uncert	- %
·		Value:	Uncert.	- %
	-	Value:	Uncert.	- %
·	_	Value:	Uncert.	- %
J.				
Method of measurement: DSC			Accept Ca	ancel
	3. Enter unce	ertainties for co	onstraints,	
	if know	n (absolute o	r percent)	

Variables: Specification of quantities that are varied

For the example, these are pH and concentration of lysozyme

Bio System Properties		
Help		
Substance: lysozyme		✓ Sample # ✓
Phase Solution	Initial state: Native	•
Composition Constrain Variables roperties	1. Select variables	_
		Next
Var.1 pH	-	Uncert.
Var.2 Mass concentration	▼ lysozyme _ kg/m3	Uncert. 🔽 🏹 🖉 %
		Uncert.
		Uncert.
	-	Uncer.
	2. Enter uncertainties, if known	Uncert.
		Uncert.
	•	Uncert.
Method of measurement: DSC		Accept Cancel

Next tab...

Properties: Specification of properties

For the example, these are pH and concentration of lysozyme

Bio System Properties		
Help		
Substance: lysozyme		Sample #
Phase Solution	✓ Initial state: Native	•
Composition Constraints Variable Properties		-
	Next to	
	Data Table →	Next
Zero-Gibbs energy temperature		K Uncert. 🗆 🗆 🕷
Enthalpy of transition	1	kJ/mol Uncert. 🔽 🗆 🕿
van't Hoff enthalpy of transition	1	kJ/mol Uncert.
		Uncert.
		Uncert. 🔽 🗆 🖓 🏀
	2. Enter uncertainties for prope	rties ^{Jncert.}
<u>·</u>	Absolute or percent	Jncert.
	Incertainties associate	d with
Method of measurement: DSC	each value can be cap	LUIE Accept Cancel
	on the next form	

Numerical Data Table: Enter values for variables and properties

For the example: Variables: pH, conc of lysozyme Properties: T_G , $\Delta_{trs}H$, $\Delta_{trs}H_{vH}$

	Var.1		Var.2	Prop.1	Unc.1	Prop.2	Unc.2	Prop.3	Unc.3			
	pН		Mass conce	Zero-Gibbs (ana kanalari sa	Enthalpy of I		van't Hoff er				
1		2.5	4.81	331.4		393		392				
	2	2.5	4.81	331.5		378		391				
	3	2.5	4.81	331.7		397		406				
	4	2.5	0.97	331.6		403		403				
	5	2.5	0.97	331.6		403		403				
	6	2.5	0.98	331.5		406		406				
	7	2.5	0.95	331.5		401		402				
	8	2.5	2.28	331.5		397		401				
	9	2.5	2.28	331.5		401		402				
	10	2.3	1.00	331.3		401		382				
	11	2.3	2.32	331.6		427		373]			
	12	2.3	2.36	331.9		434		369]			
	13	2.3	2.36	331.6		439		368				
	14	2.3	4.72	330.3		436		363]			
	15	2.3	4.77	330.5		411		373]			
	16	2.3	4.77	331.6		401		377				
	17	2.3	9.70	331.9		434		366]			
	18	2.3	9.70	331.9		423		373]	Г		
	19	2.5	1.00	331.1		396		396]		Click Acc	ent
	20	25	1.00	330.8		418		418]			Cpt
kV			t for	331.1		401		403]		when don	e
				330.6		386		388	I			<u> </u>
arar	hina	on	tions	330.8		419		418				
grap	in ig	υp		331.2		326		398				

Note: Columns can be resized (by dragging as in *Excel*) to show full property and variable names, if desired.

5										X
Eile	<u>E</u> dit (Action H	<u>i</u> elp							
-		Mart	ly	Pres 1	1 Lune 1	Den 2	Una 2	Dura 2	Line 2	
-			Mass concentration (lusozume)	Zero-Gibbs energy temperature	Unc. I	Enthalpy of transition	Unc.z	PTOP.3	Unc.3	
1		25	Mass concentration (iysozyme)	22ero-cribbs energy temperature		293	4	vant non enmapy of transitor 392		
-	-	2 25	4.81	331 5		378	1	391		
		3 25	4.81	331.7	2	397	1	406		
	3	4 25	0.97	331 6	}	403		403		
	3	5 2.5	0.97	331.6	}	403	1	403	-	
	3	6 2.5	0.98	331.5	5	406	1	406	1	
	1	7 2.5	0.95	331.5	5	401	1	402		
	8	8 2.5	2.28	331.5	5	397	1	401		
	1	9 2.5	2.28	331.5	5	401	1	402		
	1	0 2.3	1.00	331.3	}	401	1	382		
	1	1 2.3	2.32	331.6	;	427		373		
	1	2 2.3	2.36	331.9	}	434		369		
	1	3 2.3	2.36	331.6)	439		368		
	1	4 2.3	4.72	330.3	}	436		363		
	1	5 2.3	4.77	330.5	5	411		373		
	1	6 2.3	4.77	331.6	6	401		377		
	1	7 2.3	9.70	331.9	9	434		366		
	1	8 2.3	9.70	331.9)	423	<u></u>	373]	
	1	9 2.5	1.00	331.1		396	<u>[</u>	396]	
	2	2.5	1.00	330.8	3	418		418	I	
	2	2.5	1.00	331.1		401		403]	
	2	2 2.5	2.41	330.6	6	386		388]	
_	2	2.5	2.41	330.8	3	419		418]	
	2	2.5	2.41	331.2	2	396		398		-
2	2		1.04	0000				200		
			Clear th	e Table View plo	it			Accept	Cance	el

Graphical Representation: Plot any property against any variable (2-d only)

For the example, this is not very informative...

OK returns to Numerical Data Table

		-	

<u>File Edit Action Help</u>

	Var.1	Var.2	Prop.1	Unc.1	Prop.2	Unc.2	Prop.3	Unc.3
	pН	Mass concentration (lysozyme)	Zero-Gibbs energy temperature		Enthalpy of transition	l.	van't Hoff enthalpy of transition	-
	2.5	4.81	331.4	[]	393		392	
2	2.5	4.81	331.5)	378		391	
3	2.5	4.81	331.7]]	397		406	
4	2.5	0.97	331.6]]	403		403	
5	2.5	0.97	331.6]]	403		403	
6	2.5	0.98	331.5]]	406		406	
7	2.5	0.95	331.5]]	401		402	
8	2.5	2.28	331.5]]	397		401	
9	2.5	2.28	331.5]	401		402	
10	2.3	1.00	331.3]	401		382	
11	2.3	2.32	331.6]	427		373	
12	2.3	2.36	331.9]]	434		369	
13	2.3	2.36	331.6]]	439		368	
14	2.3	4.72	330.3]]	436	T.		
15	2.3	4.77	330.5		411]	Click Accen	t
16	2.3	4.77	331.6	1	401			•
17	2.3	9.70	331.9		434		when done	
18	2.3	9.70	331.9		423			
19	2.5	1.00	331.1	1	396		396	
20	2.5	1.00	330.8]]	418	1	418	
21	2.5	1.00	331.1		401	1	403	
22	2.5	2.41	330.6]	386	1	388	
23	2.5	2.41	330.8		419	1	418	
24	2.5	2.41	331.2]]	396		398	
25	1 25	1.04	220.0		200			
		Clear th	e Table View plo	t .		Y	Accept	Can

Property capture is complete...

